Silicon integrated, out-of-plane heat flux thermoelectric generator

    公开(公告)号:US10050190B2

    公开(公告)日:2018-08-14

    申请号:US15464564

    申请日:2017-03-21

    Abstract: An enhanced electrical yield is achieved with an integrated thermoelectric generator (iTEG) of out-of-plane heat flux configuration on a substrate wafer having hill-top junction metal contacts and valley-bottom junction metal contacts joining juxtaposed ends of segments, alternately p-doped and n-doped, of defined thin film lines of segments of a polycrystalline semiconductor, extending over inclined opposite flanks of hills of a material of lower thermal conductivity than the thermal conductivity of the thermoelectrically active polycrystalline semiconductor, by keeping void the valleys spaces (V) among the hills and delimited at the top by a planar electrically non conductive cover with metal bond pads defined over the coupling surface, adapted to bond with respective hill-top junction metal contacts. The junction metal contacts have a cross sectional profile of low aspect ratio, with two arms or wings overlapping the juxtaposed end portions of the segments. Preferably the inner void is evacuated upon packaging the iTEG.

    Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration

    公开(公告)号:US10003002B2

    公开(公告)日:2018-06-19

    申请号:US15464987

    申请日:2017-03-21

    CPC classification number: H01L35/32 H01L35/22 H01L35/30 H01L35/34

    Abstract: Disclosed are two geometrically identical integrated Z-device structures, integrated in two distinct silicon dices, joined together in a face-to-face configuration, such that a p-doped thin film leg of one structure faces toward a n-doped thin film leg of the other structure and vice versa. Upon joining the Z-device structures together, the hill-top metal contacts of one integrated structure are bonded in electrical and thermal continuity with correspondent hill-top metal contacts of the other integrated structure, forming a substantially bivalve TEG of increased power yield for the same footprint area and having an enhanced conversion efficiency. Thermo-electrically generated current may be gathered from one or several end pad pairs, the pads of which are connected to respective valley bottom contacts, on one and on the other of the two dices of the bivalve device, at the ends of conductive lines of micro cells respectively belonging to one and to the other of the two coupled dices.

Patent Agency Ranking