ULTRASMALL NANOPARTICLES AND METHODS OF MAKING AND USING SAME

    公开(公告)号:US20230140770A1

    公开(公告)日:2023-05-04

    申请号:US17852242

    申请日:2022-06-28

    Abstract: An aqueous synthesis methodology for the preparation of silica nanoparticles (SNPs), core-shell SNPs having, for example, a size of 2 to 15 nm and narrow size-dispersion with size control below 1 nm, i.e. at the level of a single atomic layer. Different types of dyes, including near infrared (NIR) emitters, can be covalently encapsulated within and brightness can be enhanced via addition of extra silica shells. The surface may be functionalized with polyethylene glycol (PEG) groups and, optionally, specific surface ligands. This aqueous synthesis methodology also enables synthesis of 2 to 15 nm sized fluorescent core and core-shell aluminosilicate nanoparticles (ASNPs) which may also be surface functionalized. Encapsulation efficiency and brightness of highly negatively charged NIR fluorophores is enhanced relative to the corresponding SNPs without aluminum.

    ULTRASMALL NANOPARTICLES AND METHODS OF MAKING AND USING SAME

    公开(公告)号:US20250114484A1

    公开(公告)日:2025-04-10

    申请号:US18908740

    申请日:2024-10-07

    Abstract: An aqueous synthesis methodology for the preparation of silica nanoparticles (SNPs), core-shell SNPs having, for example, a size of 2 to 15 nm and narrow size-dispersion with size control below 1 nm, i.e. at the level of a single atomic layer. Different types of dyes, including near infrared (NIR) emitters, can be covalently encapsulated within and brightness can be enhanced via addition of extra silica shells. The surface may be functionalized with polyethylene glycol (PEG) groups and, optionally, specific surface ligands. This aqueous synthesis methodology also enables synthesis of 2 to 15 nm sized fluorescent core and core-shell aluminosilicate nanoparticles (ASNPs) which may also be surface functionalized. Encapsulation efficiency and brightness of highly negatively charged NIR fluorophores is enhanced relative to the corresponding SNPs without aluminum.

    Ultrasmall nanoparticles and methods of making and using same

    公开(公告)号:US12115231B2

    公开(公告)日:2024-10-15

    申请号:US17852242

    申请日:2022-06-28

    Abstract: An aqueous synthesis methodology for the preparation of silica nanoparticles (SNPs), core-shell SNPs having, for example, a size of 2 to 15 nm and narrow size-dispersion with size control below 1 nm, i.e. at the level of a single atomic layer. Different types of dyes, including near infrared (NIR) emitters, can be covalently encapsulated within and brightness can be enhanced via addition of extra silica shells. The surface may be functionalized with polyethylene glycol (PEG) groups and, optionally, specific surface ligands. This aqueous synthesis methodology also enables synthesis of 2 to 15 nm sized fluorescent core and core-shell aluminosilicate nanoparticles (ASNPs) which may also be surface functionalized. Encapsulation efficiency and brightness of highly negatively charged NIR fluorophores is enhanced relative to the corresponding SNPs without aluminum.

    Ultrasmall nanoparticles and methods of making and using same

    公开(公告)号:US11291737B2

    公开(公告)日:2022-04-05

    申请号:US15571420

    申请日:2016-05-04

    Abstract: An aqueous synthesis methodology for the preparation of silica nanoparticles (SNPs), core-shell SNPs having, for example, a size of 2 to 15 nm and narrow size-dispersion with size control below 1 nm, i.e. at the level of a single atomic layer. Different types of dyes, including near infrared (NIR) emitters, can be covalently encapsulated within and brightness can be enhanced via addition of extra silica shells. The surface may be functionalized with polyethylene glycol (PEG) groups and, optionally, specific surface ligands. This aqueous synthesis methodology also enables synthesis of 2 to 15 nm sized fluorescent core and core-shell aluminosilicate nanoparticles (ASNPs) which may also be surface functionalized. Encapsulation efficiency and brightness of highly negatively charged NIR fluorophores is enhanced relative to the corresponding SNPs without aluminum.

Patent Agency Ranking