摘要:
Provided are phenazine copolymers and methods of making and using phenazine copolymers. The phenazine copolymers may be made from one or more phenazine precursors and one or more co-monomer precursors, one or more phenazine precursors and one or more cross-linking precursors, or one or more phenazine precursors and both one or more cross-linking precursors and one or more co-monomer precursors. The phenazine copolymers may be used in/on cathodes. The cathodes may be used in a variety of devices, such as, for example, batteries or supercapacitors.
摘要:
Provided are porous Fe3O4/sulfur composites. The composites are composed of porous Fe3O4 nanoparticles and sulfur, where the sulfur loading is 70-85% by weight based on the total weight of the composite. Also provided are batteries having cathodes containing porous FE3O4 composites of the present disclosure.
摘要:
A titanium disulfide-sulfur (TiS2—S) composite particle contains a titanium disulfide (TiS2) substrate having solid elemental sulfur (S) disposed directly on a surface of the TiS2. The TiS2 substrate has a layered crystalline hexagonal structure of space group P-3 ml and includes at least 100 distinct layers. The TiS2 and S are present in the composite in a weight ratio (TiS2:S) of 20:80 to 50:50. Cathodes and batteries containing the composite particle, as well as related methods, are also disclosed.
摘要:
A method for preparing a material composition comprising a hollow transition metal oxide nanoparticle supported upon a carbon material support includes a solution impregnation process step, followed by a thermal reduction process step and finally a thermal oxidation process step. The material composition, an electrode and an electrical component such as but not limited to a battery are all predicated at least in-part upon the material composition prepared in accord with the foregoing method. The foregoing material composition, electrode, battery and method may ultimately provide a LIB with enhanced performance.
摘要:
A materials composition and a method for preparing the materials composition provide: (1) a core material comprising a reactive carbon material-sulfur material composite; surrounded by and chemically coupled with (2) a shell material comprising a reactive sheath material. The material composition is useful within electrodes within electrical components including but not limited to electrochemical gas cells, supercapacitors and batteries where enhanced cycling may be realized.
摘要:
A method for preparing a material composition comprising a hollow transition metal oxide nanoparticle supported upon a carbon material support includes a solution impregnation process step, followed by a thermal reduction process step and finally a thermal oxidation process step. The material composition, an electrode and an electrical component such as but not limited to a battery are all predicated at least in-part upon the material composition prepared in accord with the foregoing method. The foregoing material composition, electrode, battery and method may ultimately provide a LIB with enhanced performance.
摘要:
Embodiments provide a nanoparticle and a method for preparing the nanoparticle, as well as a membrane that includes the nanoparticle and a fuel cell that includes the membrane. The method comprises a thermal treatment method that provides from a nanoparticle comprising a structurally disordered material the nanoparticle comprising: (1) a structurally ordered core comprising a first material; and (2) a shell surrounding and further structurally aligned with the structurally ordered core and comprising a second material different from the first material. Particularly desirable is a nanoparticle comprising a Pt3Co@Pt/C structurally ordered core-shell composition supported upon a carbon support.
摘要:
A solid-state three-dimensional battery assembly includes a solid bicontinuous monolithic carbon anode, a solid electrolyte layer, and a solid cathode. The solid monolithic carbon anode has an ordered three-dimensionally continuous network nanostructure, a length of at least 100 nm, and an average thickness of 3 to 90 nm. The ordered three-dimensionally continuous network nanostructure of the anode defines a plurality of pores having an average diameter of 5 to 100 nm. The solid electrolyte layer is disposed directly on the anode, has an average thickness of 3 to 90 nm, and fills a portion of the pores defined by the ordered three-dimensionally continuous network nanostructure of the anode. The solid cathode is disposed directly on the electrolyte layer, has an average thickness of 3 to 90 nm, and also fills a portion of the pores defined by the ordered three-dimensionally continuous network nanostructure of the anode. Related devices and methods are also provided.
摘要:
A method for preparing a material composition comprising a hollow transition metal oxide nanoparticle supported upon a carbon material support includes a solution impregnation process step, followed by a thermal reduction process step and finally a thermal oxidation process step. The material composition, an electrode and an electrical component such as but not limited to a battery are all predicated at least in-part upon the material composition prepared in accord with the foregoing method. The foregoing material composition, electrode, battery and method may ultimately provide a LIB with enhanced performance.
摘要:
MOFs including sulfur nanoparticles. The sulfur nanoparticles may be encapsulated in the MOFs. The MOFs may be made by methods where MOFs are formed in situ or are preformed prior to the incorporation of sulfur. The MOFs may be used to make composite materials. The composite materials may be used in cathodes. Cathodes may be used in devices. A device may be a battery.