Abstract:
In some embodiments, a data center optical communications system includes: a transmitter comprising a light source, wherein the light source is configured to provide light; an optical fiber operably connected to said transmitter and configured to receive light from the light source, wherein the optical fiber has a length L of 50 km or greater; a receiver configured to receive light from the optical fiber, wherein the receiver includes a detector for detecting the light, wherein the system has a power consumption of 15 W or less
Abstract:
An optical fiber connection is provided that includes a first optical fiber defining a first exterior surface and a first effective area. The first fiber defines a first tapered region tapering from a first nominal fiber diameter to a first tapered diameter. A second optical fiber has a second exterior surface and a second effective area less than the first effective area. The second fiber defines a second tapered region tapering from a second nominal fiber diameter to a second tapered diameter and a fiber splice optically coupling the first tapered region of the first fiber to the second tapered region of the second fiber. The first and second tapered regions taper such that the first and second exterior surfaces have a variance from a Gaussian function of less than 25% of the Gaussian function at each point along the first and second exterior surfaces.
Abstract:
A quasi-single-mode (QSM) optical fiber includes a core and a cladding surrounding the core. The core includes a centerline and an outer edge. The cladding includes an interior edge and an exterior edge. The cladding has a cladding outer diameter defined by the exterior edge of the cladding. The cladding outer diameter may be in the range of greater than 170 μm to about 200 μm. The QSM fiber has a cabled cutoff wavelength that is greater than about 1530 nm. The core and the cladding support a fundamental mode LP01 and a higher-order mode LP11. The fundamental mode LP01 has an effective area Aeff>150 μm2.
Abstract:
In some embodiments, a data center optical communications system includes: a transmitter comprising a light source, wherein the light source is configured to provide light; an optical fiber operably connected to said transmitter and configured to receive light from the light source, wherein the optical fiber has a length L of 50 km or greater; a receiver configured to receive light from the optical fiber, wherein the receiver includes a detector for detecting the light, wherein the system has a power consumption of 15 W or less.
Abstract:
Optical transmission systems and methods are disclosed that utilize a QSM optical fiber with a large effective area and that supports only two modes, namely the fundamental mode and one higher-order mode. The optical transmission system includes a transmitter and a receiver optically coupled by an optical fiber link that includes at least one section of the QSM optical fiber. Transmission over optical fiber link gives rise to MPI, which is mitigated using a digital signal processor. The QSM optical fiber is designed to have an amount of DMA that allows for the digital signal processor to have reduced complexity as reflected by a reduced number of filter taps as compared to if the DMA were zero.
Abstract:
Excess radio-frequency (RF) power storage and power sharing RF Identification (RFID) tags, and related RFID tag connection systems and methods are disclosed. The excess RF power storage and power sharing RFID tags and related RFID tag connection systems and methods in embodiments disclosed herein allow connected RFID tags to store excess energy derived from excess received RF power in a shared energy storage device. In this manner, an individual RFID tag or a group of connected RFID tags in the RFID tag connection system can continue operation during temporary times when sufficient RF power is not being received from a RFID reader. Sharing stored energy derived from excess received RF power in a shared energy storage device among connected RFID tags in a RFID tag connection system can significantly mitigate problems of RF power interruption.
Abstract:
A quasi-single-mode (QSM) optical fiber includes a core and a cladding surrounding the core. The core includes a centerline and an outer edge. The cladding includes an interior edge and an exterior edge. The cladding has a cladding outer diameter defined by the exterior edge of the cladding. The cladding outer diameter may be in the range of greater than 170 μm to about 200 μm. The QSM fiber has a cabled cutoff wavelength that is greater than about 1530 nm. The core and the cladding support a fundamental mode LP01 and a higher-order mode LP11. The fundamental mode LP01 has an effective area Aeff>150 μm2.
Abstract:
Opto-electrical connection systems including opto-electrical cables providing configurable connectivity between electrical devices having electrical interfaces are disclosed. Related assemblies and methods are also disclosed. By using configurable connection assemblies having at least one configurable connection device adapted to accept optical connectors of optical fibers of opto-electrical cables, many electrical devices having electrical interfaces may be configurably connected. For example, the configurable opto-electrical connection system may be configured to provide more bandwidth and/or connect electrical devices with less power consumption than would be associated with conventional copper cabling solutions. In this manner, the high bandwidth, lower power consumption, and long distance signal capability of optical fibers may be provided to connect electronic devices which were originally designed with electrical interfaces meant to be connected with copper cables.
Abstract:
Optical transmission systems and methods are disclosed that utilize a QSM optical fiber with a large effective area and that supports only two modes, namely the fundamental mode and one higher-order mode. The optical transmission system includes a transmitter and a receiver optically coupled by an optical fiber link that includes at least one section of the QSM optical fiber. Transmission over optical fiber link gives rise to MPI, which is mitigated using a digital signal processor. The QSM optical fiber is designed to have an amount of DMA that allows for the digital signal processor to have reduced complexity as reflected by a reduced number of filter taps as compared to if the DMA were zero.