Abstract:
A system and method are described herein for controlling an environment around an inlet tube in the glass manufacturing system. More specifically, the system and method control a level of hydrogen within a humid gas mixture that flows over an exterior of the inlet tube to effectively suppress the formation of undesirable gaseous inclusions in molten glass that flows through the inlet tube.
Abstract:
According to one embodiment, an apparatus for forming a glass ribbon may include a forming wedge disposed in a housing and including a pair of downwardly inclined forming surface portions converging at a root. A plurality of heating cartridges may be positioned in ports of the housing. Each heating cartridge may include a heat directing surface that is oriented at an angle of greater than about 90° with respect to a bottom surface of the heating cartridge. The heat directing surface may include at least one heating element positioned adjacent to the heat directing surface. The heating cartridge may be positioned such that the heat directing surface faces the forming wedge and an upper edge of the heat directing surface is positioned above the root to direct heat from the heat directing surface towards the root of the forming wedge.
Abstract:
Glass manufacturing apparatuses with particulate removal devices and methods for using the same are disclosed. In one embodiment, a fusion draw machine for forming a glass web from molten glass includes an enclosure and a first pull roll and a second pull roll rotatably positioned in an interior of an enclosure. The first pull roll and the second pull roll cooperate to draw a glass web in a draw direction. A particulate removal device for removing particulate matter from the interior of the enclosure is fluidly coupled to the enclosure and includes a vacuum nozzle disposed in the interior of the enclosure and fluidly coupled to a vacuum source with a vacuum line. A particulate filter is fluidly coupled to the vacuum nozzle and the vacuum source and traps particulate matter exhausted from the interior of the enclosure through the vacuum nozzle.
Abstract:
A method and apparatus for manufacturing a glass article includes flowing a glass ribbon through a housing having first and second side walls. The first and second side walls extend between the glass ribbon and a cooling mechanism and at least one of the side walls has at least one closeable opening, such that a greater amount of heat is transferred from the glass ribbon when the closeable opening is open than when the closeable opening is closed.
Abstract:
According to one embodiment, an apparatus for forming a glass ribbon may include a forming wedge disposed in a housing and including a pair of downwardly inclined forming surfaces converging at a root. A plurality of heating cartridges may be positioned in ports of the housing. Each heating cartridge may include a heat directing surface that is oriented at an angle of greater than about 90° with respect to a bottom surface of the heating cartridge. The heat directing surface may include at least one heating element positioned adjacent to the heat directing surface. The heating cartridge may be positioned such that the heat directing surface faces the forming wedge and an upper edge of the heat directing surface is positioned above the root to direct heat from the heat directing surface towards the root of the forming wedge.
Abstract:
Glass manufacturing apparatuses with cooling devices and methods for using the same are disclosed. In one embodiment, an apparatus for forming a glass web from molten glass includes an enclosure and pulling rolls that cooperate to draw a glass web in a draw direction rotatably positioned in an interior of the enclosure. A cooling device for extracting heat from the glass web is in fluid communication with a cooling fluid source and includes an actively cooled flapper disposed in the interior of the enclosure that is movable to facilitate varying the heat extraction. The actively cooled flapper serves as a heat sink in the interior of the enclosure and the cooling fluid extracts heat from the actively cooled flapper to remove heat from the glass web and the enclosure.
Abstract:
Glass manufacturing apparatuses with cooling devices and methods for using the same are disclosed. In one embodiment, an apparatus for forming a glass web from molten glass includes an enclosure and pulling rolls that cooperate to draw a glass web in a draw direction rotatably positioned in an interior of the enclosure. A cooling device for extracting heat from the glass web is in fluid communication with a cooling fluid source and includes an actively cooled flapper disposed in the interior of the enclosure that is movable to facilitate varying the heat extraction. The actively cooled flapper serves as a heat sink in the interior of the enclosure and the cooling fluid extracts heat from the actively cooled flapper to remove heat from the glass web and the enclosure.
Abstract:
An apparatus for making a glass ribbon can include a heating plane including a heat footprint facing the surface of an edge director. A projection of the heat footprint in a resultant direction of the heating plane within the heat footprint can intersect the surface of the edge director. In further embodiments, a fusion draw method of making a glass ribbon can include radiating heat within a heat footprint of a heating plane toward a surface of an edge director. At least a portion of the heating plane within the heat footprint can face the surface of the edge director so that the surface of the edge director is intersected with heat radiating from the heat footprint of the heating plane.
Abstract:
A system and method are described herein for controlling an environment around an inlet tube in the glass manufacturing system. More specifically, the system and method control a level of hydrogen within a humid gas mixture that flows over an exterior of the inlet tube to effectively suppress the formation of undesirable gaseous inclusions in molten glass that flows through the inlet tube.
Abstract:
Glass manufacturing apparatuses with particulate removal devices and methods for using the same are disclosed. In one embodiment, a fusion draw machine for forming a glass web from molten glass includes an enclosure and a first pull roll and a second pull roll rotatably positioned in an interior of an enclosure. The first pull roll and the second pull roll cooperate to draw a glass web in a draw direction. A particulate removal device for removing particulate matter from the interior of the enclosure is fluidly coupled to the enclosure and includes a vacuum nozzle disposed in the interior of the enclosure and fluidly coupled to a vacuum source with a vacuum line. A particulate filter is fluidly coupled to the vacuum nozzle and the vacuum source and traps particulate matter exhausted from the interior of the enclosure through the vacuum nozzle.