Abstract:
A system and method are described herein for controlling an environment around an inlet tube in the glass manufacturing system. More specifically, the system and method control a level of hydrogen within a humid gas mixture that flows over an exterior of the inlet tube to effectively suppress the formation of undesirable gaseous inclusions in molten glass that flows through the inlet tube.
Abstract:
A cartridge assembly includes a hub portion having a first end and a second end, a first retaining ring portion including a first snap ring and a first retaining ring member, and a second retaining ring portion including a second snap ring and a second retaining ring member. The cartridge assembly further includes a plurality of disc elements positioned between the first retaining ring portion and the second retaining ring portion, where the plurality of disc elements has an outer diameter that is greater than an outer diameter of the first retaining ring portion and the second retaining ring portion, and a plurality of fastening members positioned at the first end and the second end of the hub portion, the plurality of fastening members extending radially inward from the hub portion.
Abstract:
A cartridge assembly includes a hub portion having a first end and a second end, a first retaining ring portion including a first snap ring and a first retaining ring member, and a second retaining ring portion including a second snap ring and a second retaining ring member. The cartridge assembly further includes a plurality of disc elements positioned between the first retaining ring portion and the second retaining ring portion, where the plurality of disc elements has an outer diameter that is greater than an outer diameter of the first retaining ring portion and the second retaining ring portion, and a plurality of fastening members positioned at the first end and the second end of the hub portion, the plurality of fastening members extending radially inward from the hub portion.
Abstract:
According to one embodiment, an apparatus for forming a glass ribbon may include a forming wedge disposed in a housing and including a pair of downwardly inclined forming surfaces converging at a root. A plurality of heating cartridges may be positioned in ports of the housing. Each heating cartridge may include a heat directing surface that is oriented at an angle of greater than about 90° with respect to a bottom surface of the heating cartridge. The heat directing surface may include at least one heating element positioned adjacent to the heat directing surface. The heating cartridge may be positioned such that the heat directing surface faces the forming wedge and an upper edge of the heat directing surface is positioned above the root to direct heat from the heat directing surface towards the root of the forming wedge.
Abstract:
A cartridge assembly includes a hub portion having a first end and a second end, a first retaining ring portion including a first snap ring and a first retaining ring member, and a second retaining ring portion including a second snap ring and a second retaining ring member. The cartridge assembly further includes a plurality of disc elements positioned between the first retaining ring portion and the second retaining ring portion, where the plurality of disc elements has an outer diameter that is greater than an outer diameter of the first retaining ring portion and the second retaining ring portion, and a plurality of fastening members positioned at the first end and the second end of the hub portion, the plurality of fastening members extending radially inward from the hub portion.
Abstract:
A substrate with coated edge surfaces, an apparatus for performing the coating, and a method therefor are described. The substrate may include edge surface electrical connectors, wherein the edge coating is coated overtop the edge surface electrical connectors. The apparatus for performing the coating operation includes a rotary fixture configured to facilitate coating of all edge surfaces of a stack of substrate prior to curing of the edge surface coating, wherein according to the method, edge surfaces of one group of corresponding edge surfaces in the stack are coated with a coating material, the rotary fixture is then rotated to position a second group of edge surfaces for coating, and so forth. The coating process is controlled to obtain a consistent overflow onto major surfaces of the stacked substrates.
Abstract:
According to one embodiment, an apparatus for forming a glass ribbon may include a forming wedge disposed in a housing and including a pair of downwardly inclined forming surface portions converging at a root. A plurality of heating cartridges may be positioned in ports of the housing. Each heating cartridge may include a heat directing surface that is oriented at an angle of greater than about 90° with respect to a bottom surface of the heating cartridge. The heat directing surface may include at least one heating element positioned adjacent to the heat directing surface. The heating cartridge may be positioned such that the heat directing surface faces the forming wedge and an upper edge of the heat directing surface is positioned above the root to direct heat from the heat directing surface towards the root of the forming wedge.
Abstract:
A cartridge assembly includes a hub portion having a first end and a second end, a first retaining ring portion including a first snap ring and a first retaining ring member, and a second retaining ring portion including a second snap ring and a second retaining ring member. The cartridge assembly further includes a plurality of disc elements positioned between the first retaining ring portion and the second retaining ring portion, where the plurality of disc elements has an outer diameter that is greater than an outer diameter of the first retaining ring portion and the second retaining ring portion, and a plurality of fastening members positioned at the first end and the second end of the hub portion, the plurality of fastening members extending radially inward from the hub portion.
Abstract:
A system and method are described herein for controlling an environment around an inlet tube in the glass manufacturing system. More specifically, the system and method control a level of hydrogen within a humid gas mixture that flows over an exterior of the inlet tube to effectively suppress the formation of undesirable gaseous inclusions in molten glass that flows through the inlet tube.
Abstract:
A pervaporation element includes a ceramic monolith having an array of parallel channels separated by porous channel walls extending along an axial length of the monolith, and a functional membrane coating a first plurality of the porous channel walls along the axial length of the monolith. The functional membrane functions to separate a fluid into a retentate portion and a permeate portion. The porous channel walls coated by the functional membrane define a plurality of discrete through segments, where each of the discrete through segments are separated from one another by a plurality of uncoated porous channel walls. Fluid entering the discrete through segments is separated into a retentate portion that exits in substantial portion through the discrete through segments and a permeate portion that exits the ceramic monolith radially outward through the uncoated porous channel walls and through a skin of the monolith.