Abstract:
A forming body of a glass forming apparatus is disclosed having an upper portion, a first forming surface, and a second forming surface extending downward from the upper portion to converge at a root. The upper portion of the forming body includes a trough for receiving molten glass, the trough including a first weir, a second weir, and a base extending between weirs. Each weir has a reinforcing portion extending upward from the base towards the tops of the weirs. A width of the base of the trough at a may be less than a top width of the trough. One or more of the top width, width of the base, or angle between an inner surface of the first or second weir and a vertical plane may be constant along a trough length of the trough.
Abstract:
According to one embodiment, a forming body of a glass forming apparatus may include an upper portion with a first forming surface and a second forming surface extending from the upper portion. The first forming surface and the second forming surface may converge at a bottom edge of the forming body. A trough for receiving molten glass may be positioned in the upper portion of the forming body. The trough may include a first weir, a second weir opposite from and spaced apart from the first weir, and a base extending between the first weir and the second weir. At least a portion of a vertical surface of the first weir may curve inward towards a centerline of the trough. Similarly, at least a portion of a vertical surface of the second weir may curve inward towards the centerline of the trough.
Abstract:
A system includes an overflow distributor and a support member. The overflow distributor includes a first sidewall, a second sidewall opposite the first sidewall, and a floor extending between the opposing first and second sidewalls. Interior surfaces of the first sidewall, the second sidewall, and the floor cooperatively define a trough configured to receive molten glass. Exterior surfaces of the first sidewall and the second sidewall are configured to direct molten glass that overflows the trough. The support member is disposed between the opposing first and second sidewalls of the overflow distributor and abutting an exterior surface of the floor of the overflow distributor.
Abstract:
An interlocking structure including: a top panel; a first wall and second wall; a first brace and a second brace each having interlocks that interlock with complementary interlocks on the top panel and at least one of the first and second walls. The structure can optionally have an additional interlocking joint, for example, a boss and via, between the top panel and contact point(s) or contact regions of each wall, and the interlocking joint can optionally have an adhesive seal to lock the optional interlocking joints. Also disclosed is a method of making the liner article and methods for using the article for forming glass, as defined herein.
Abstract:
A system includes an overflow distributor and a support member. The overflow distributor includes a first sidewall, a second sidewall opposite the first sidewall, and a floor extending between the opposing first and second sidewalls. Interior surfaces of the first sidewall, the second sidewall, and the floor cooperatively define a trough configured to receive molten glass. Exterior surfaces of the first sidewall and the second sidewall are configured to direct molten glass that overflows the trough. The support member is disposed between the opposing first and second sidewalls of the overflow distributor and abutting an exterior surface of the floor of the overflow distributor.
Abstract:
An interlocking structure including: a top panel; a first wall and second wall; a first brace and a second brace each having interlocks that interlock with complementary interlocks on the top panel and at least one of the first and second walls. The structure can optionally have an additional interlocking joint, for example, a boss and via, between the top panel and contact point(s) or contact regions of each wall, and the interlocking joint can optionally have an adhesive seal to lock the optional interlocking joints. Also disclosed is a method of making the liner article and methods for using the article for forming glass, as defined herein.
Abstract:
A glass forming apparatus may include a forming body comprising a first forming surface and a second forming surface converging at a root. The apparatus may also include at least one cradle assembly comprising a first contact surface and a second contact surface oriented in a V-configuration. The contact surfaces may be engaged with the forming surfaces. The contact surfaces may impart a holding force to the forming body, the holding force having an upward vertical force component. The forming body may also include at least one end block engaged with an end face of the forming body. The at least one end block may impart a compression force to the forming body in a direction parallel to a length of the forming body and perpendicular to the restraining force component.
Abstract:
A glass forming apparatus may include a forming body comprising a first forming surface and a second forming surface converging at a root. The apparatus may also include at least one cradle assembly comprising a first contact surface and a second contact surface oriented in a V-configuration. The contact surfaces may be engaged with the forming surfaces. The contact surfaces may impart a holding force to the forming body, the holding force having an upward vertical force component. The forming body may also include at least one end block engaged with an end face of the forming body. The at least one end block may impart a compression force to the forming body in a direction parallel to a length of the forming body and perpendicular to the restraining force component.
Abstract:
An apparatus for making a glass sheet using overflow fusion down-draw process comprising an inlet assembly having an elliptic cylindrical section coupled to a transition section which is, in turn, coupled to an open end of an open channel of an isopipe, and an overflow fusion down-draw process for making glass sheet. The glass melt flow has a high surface velocity profile conducive to the formation of a glass ribbon over the surface of the weirs and the wedge side surfaces with the desired mass distribution.
Abstract:
A glass forming apparatus and method include a weir on at least a first side of a molten core glass reservoir. The weir includes an inclined surface that, in the intended direction of molten glass flow, slopes downward in the vertical direction while extending away from the molten core glass reservoir in the horizontal direction. A source of molten clad glass is configured above the glass forming apparatus such that when molten clad glass is flowing down and molten core glass is flowing over the weir, the molten clad glass drops onto the molten core glass at a highest upstream contact point that is located directly above the inclined surface of the weir.