Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
An optical cable includes a cable body having an outer surface and an inner surface defining a lumen. The cable body has a profile feature formed on the outer surface, wherein the profile feature includes a trough that extends longitudinally between a first buttress and a second buttress, the first buttress and the second buttress having a radial height. The trough defines a continuous concave surface between the first buttress and the second buttress that is recessed below the radial height. An ink layer is adhered to the concave surface, wherein the ink layer forms alphanumeric characters that provide information related to the optical cable.
Abstract:
An optical communication cable includes a cable body having an outer surface, an inner surface, a channel defined by the inner surface and a longitudinal axis extending through the center of the channel. The outer surface of the cable body defines a profile feature such that the outer surface at the profile feature is asymmetric about the longitudinal axis. The profile feature having at least two peaks and at least one trough between the peaks, and the profile feature extends axially along at least a portion of the length of the outer surface of the cable body. The cable includes an optical transmission element located in the channel, and an ink layer positioned along an outer surface of the trough of the profile feature. The peaks are configured to limit contact of the ink layer with surfaces during installation and thereby act to protect the ink layer from abrasion.
Abstract:
A breakout cable includes a polymer jacket and a plurality of micromodules enclosed within the jacket. Each micromodule has a plurality of bend resistant optical fibers and a polymer sheath comprising PVC surrounding the bend resistant optical fibers. Each of the plurality of bend resistant optical fibers is a multimode optical fiber including a glass cladding region surrounding and directly adjacent to a glass core region. The core region is a graded-index glass core region, where the refractive index of the core region has a profile having a parabolic or substantially curved shape. The cladding includes a first annular portion having a lesser refractive index relative to a second annular portion of the cladding. The first annular portion is interior to the second annular portion. The cladding is surrounded by a low modulus primary coating and a high modulus secondary coating.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A breakout cable includes a polymer jacket and a plurality of micromodules enclosed within the jacket. Each micromodule has a plurality of bend resistant optical fibers and a polymer sheath comprising PVC surrounding the bend resistant optical fibers. Each of the plurality of bend resistant optical fibers is a multimode optical fiber including a glass cladding region surrounding and directly adjacent to a glass core region. The core region is a graded-index glass core region, where the refractive index of the core region has a profile having a parabolic or substantially curved shape. The cladding includes a first annular portion having a lesser refractive index relative to a second annular portion of the cladding. The first annular portion is interior to the second annular portion. The cladding is surrounded by a low modulus primary coating and a high modulus secondary coating.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.