Abstract:
The method allows the manufacture of at least first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements, at least one of the first and second assemblies (26, 28) comprising several filamentary elements (14) wound together in a helix.The method comprises a step of assembling M filamentary elements (14) together into a layer of the M filamentary elements (14) around a temporary core (16) to form a temporary assembly (22), and a step of splitting the temporary assembly (22) into at least the first and second assemblies (26, 28) of M1 filamentary elements and M2 filamentary elements.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
Abstract:
A reinforcement strand (400) comprises a core (403) around which steel filaments (404) are twisted all with the same final lay length and direction. The steel filaments are arranged in an intermediate layer comprising N first steel filaments and an outer layer of 2N steel filaments circumferentially arranged around the intermediate layer. In the intermediate layer filaments will contact one another at a closing lay length that is determined by the number of steel filaments N in the intermediate layer, the diameter of the core and the diameter of the first steel filaments. By choosing the final lay length and direction equal to the between two and six times the closing lay length gaps will form between the intermediate layer filaments. The 2N outer layer filaments are further divided into a group of smaller (408) and a group of larger (406) diameter steel filaments.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
Cable-stranding methods for performing SZ-stranding of strand elements about at least one core member are disclosed. One method includes passing initially spaced apart strand elements through peripheral guide holes and passing at least one core member through a generally central location of at least one guide member. The method also includes actuating a controller that controls the rotation of the at least one guide member and rotating the at least one guide member to form the SZ-stranded assembly.
Abstract:
A steel cord (1) for the reinforcement of elastomers, especially for the reinforcement of breaker layers in a tire, said steel cord comprising two strands of at least two filaments (11, 12) each, said strands being twisted around each other and forming helicoids of a same pitch, the filaments (11) of the first strand having a pitch differing from the pitch of said helicoids and having a value of more than 300 mm, the filaments (12) of the second strand having the same pitch as said helocoids and being twisted in the same sense as said helicoids, all the filaments of both of said strands having a diameter between 0.08 and 0.45 mm, wherein the diameter of the filaments of one of said strands is at least 0.02 mm greater than the diameter of the filaments of the other of said strands. Preferably the diameter of the filaments (12) of said second strand is at least 0.02 mm greater than the diameter of the filaments (11) of said first strand.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
Abstract:
For reinforcing rubber or plastics articles, particularly pneumatic tires, a wire filament is proposed which is spirally shaped and exhibits no elastic residual torsional stresses. A wire filament 8 according to the invention is produced by twisting drawn straight wire filaments 2 into the range of plastic deformation with subsequent return-twisting, at least two wire filaments being brought together and combined prior to return-twisting. Preferably at least two wire filaments 2 are brought together by means of a perforated disk 30, twisted about each other and plastically deformed in a false twister 20 and subsequently return-twisted in a further false twister 40.
Abstract:
An improved method of twisting cables, particularly communications cables, made up of a plurality of cable units so as to maintain a high manufacturing rate while minimizing electrical coupling between cable units in which the process parameters, controlling a known SZ reversing twisting devices which twist the cable units, are randomly varied to cause the sums and differences of the twist, d and the number of reversals per unit length, a, to be continuously and alternatly increased and decreased by at least 0.5 percent about a mean value and so that one of the sum (d+a) and the difference (d-a) of each unit differs from that of at least one other unit by less than 10 percent.