Abstract:
An optical cable includes a cable body having an outer surface and an inner surface defining a lumen. The cable body has a profile feature formed on the outer surface, wherein the profile feature includes a trough that extends longitudinally between a first buttress and a second buttress, the first buttress and the second buttress having a radial height. The trough defines a continuous concave surface between the first buttress and the second buttress that is recessed below the radial height. An ink layer is adhered to the concave surface, wherein the ink layer forms alphanumeric characters that provide information related to the optical cable.
Abstract:
A method of manufacturing a fiber optic cable includes manufacturing a subunit and manufacturing an outer portion. Manufacturing the subunit includes extruding a subunit jacket over a first reinforcement material constraining an optical fiber. Manufacturing the outer portion of the fiber optic cable includes extruding an outer jacket over a second reinforcement material between the outer jacket and the subunit jacket. Hoop stress is applied to the second reinforcement material by the outer jacket, which constrains the second reinforcement material such that it is positioned and oriented to provide anti-buckling support to the fiber optic cable and mitigate effects on the optical fiber of jacket shrinkage due to low temperatures.
Abstract:
An optical cable is provided. The optical cable includes a cable body having an outer surface and an inner surface defining a lumen and one or more optical transmission elements located within the lumen. The optical cable includes a groove array comprising a plurality of grooves located on the outer surface of the cable body. Each groove defines a trough having a lower surface located between peaks on either side of the trough, and the groove array includes an average groove spacing. The optical cable includes an ink layer applied to the cable body at the location of the groove array. The groove array and the ink layer are formed to limit abrasion experienced by the ink layer.
Abstract:
An optical cable is provided. The optical cable includes a cable body having an outer surface and an inner surface defining a lumen and one or more optical transmission elements located within the lumen. The optical cable includes a groove array comprising a plurality of grooves located on the outer surface of the cable body. Each groove defines a trough having a lower surface located between peaks on either side of the trough, and the groove array includes an average groove spacing. The optical cable includes an ink layer applied to the cable body at the location of the groove array. The groove array and the ink layer are formed to limit abrasion experienced by the ink layer.
Abstract:
An optical cable includes a cable body having an outer surface and an inner surface defining a lumen. The cable body has a profile feature formed on the outer surface, wherein the profile feature includes a trough that extends longitudinally between a first buttress and a second buttress, the first buttress and the second buttress having a radial height. The trough defines a continuous concave surface between the first buttress and the second buttress that is recessed below the radial height. An ink layer is adhered to the concave surface, wherein the ink layer forms alphanumeric characters that provide information related to the optical cable.
Abstract:
An optical communication cable includes a cable body having an outer surface, an inner surface, a channel defined by the inner surface and a longitudinal axis extending through the center of the channel. The outer surface of the cable body defines a profile feature such that the outer surface at the profile feature is asymmetric about the longitudinal axis. The profile feature having at least two peaks and at least one trough between the peaks, and the profile feature extends axially along at least a portion of the length of the outer surface of the cable body. The cable includes an optical transmission element located in the channel, and an ink layer positioned along an outer surface of the trough of the profile feature. The peaks are configured to limit contact of the ink layer with surfaces during installation and thereby act to protect the ink layer from abrasion.