Abstract:
A system and method for marking a moving surface of a fiber optic cable is provided. The system includes a supply of the fiber optic cable, a laser generating device configured to generate a laser beam that forms markings by interacting with the material of the moving surface of the fiber optic cable. The system includes a movement device moving the fiber optic cable through the system at a speed of at least 50 m per minute. The system includes a laser directing device located in the path of the laser beam and configured to change the path of the laser beam to direct the laser beam to a plurality of discrete locations on the moving surface to form a series of marks on the moving surface. The moving surface includes a plurality of tracking indicia to allow the position of the moving surface to be determined.
Abstract:
An optical communication cable includes a cable body, a plurality of core elements located within the cable body, a reinforcement layer surrounding the plurality of core elements within the cable body, and a film surrounding the plurality of core elements. At least one of the plurality of core elements includes an elongate optical transmission element. The film provides an inwardly directed force onto the core elements, and a surface of the film is bonded to the reinforcement layer.
Abstract:
A fiber optic cable includes a jacket forming a cavity therein, the jacket having an indentation on the exterior thereof that forms a ridge extending into the cavity along the length of the jacket; and a stack of fiber optic ribbons located in the cavity, each ribbon having a plurality of optical fibers arranged side-by-side with one another and coupled to one another in a common matrix, wherein corners of the ribbon stack pass by the ridge at intermittent locations along the length of the jacket, and wherein interaction between the ridge and the ribbon stack facilitates coupling of the ribbon stack to the jacket.
Abstract:
A method of forming an optical communication cable is provided. The cable includes a core element located in a cable jacket. The core element includes a buffer tube having an outer surface, an inner surface and a channel defined by the inner surface of the first tube. The core element includes an optical fiber located within the channel of the buffer tube and a color layer formed from a surface-deposited colorant material applied to the outer surface of the buffer tube.
Abstract:
An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
Abstract:
A fiber optic cable includes core elements wound in a pattern of stranding, the core elements comprising tubes surrounding optical fibers. The fiber optic cable further includes an binder film surrounding the stranded core elements. The binder film is continuous peripherally around the core elements, forming a continuous closed loop when viewed in cross-section, and continuous lengthwise along a length of the cable that is at least a meter. Further, the binder film is in radial tension and opposes outwardly transverse deflection of the core elements.
Abstract:
An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
Abstract:
A fiber optic cable includes a jacket forming a cavity therein, a stack of fiber optic ribbons located in the cavity, and a strength member embedded in the jacket. The jacket forms a ridge extending into the cavity lengthwise along the fiber optic cable. The ribbon stack is spiraled through the cavity such that corners of the ribbon stack pass by the ridge at intermittent locations along the length of the cable, where interactions between the ridge and the corners of the ribbon stack facilitate coupling of the ribbon stack to the jacket.
Abstract:
A method of forming an optical communication cable is provided. The cable includes a core element located in a cable jacket. The core element includes a buffer tube having an outer surface, an inner surface and a channel defined by the inner surface of the first tube. The core element includes an optical fiber located within the channel of the buffer tube and a color layer formed from a surface-deposited colorant material applied to the outer surface of the buffer tube.
Abstract:
A fiber optic cable includes a jacket forming a cavity therein, a stack of fiber optic ribbons located in the cavity, and a strength member embedded in the jacket. The jacket forms a ridge extending into the cavity lengthwise along the fiber optic cable. The ribbon stack is spiraled through the cavity such that corners of the ribbon stack pass by the ridge at intermittent locations along the length of the cable, where interactions between the ridge and the corners of the ribbon stack facilitate coupling of the ribbon stack to the jacket.