Abstract:
An optical communication cable includes a cable body, a plurality of core elements located within the cable body, a reinforcement layer surrounding the plurality of core elements within the cable body, and a film surrounding the plurality of core elements. At least one of the plurality of core elements includes an elongate optical transmission element. The film provides an inwardly directed force onto the core elements, and a surface of the film is bonded to the reinforcement layer.
Abstract:
A fiber optic cable includes a jacket forming a cavity therein, the jacket having an indentation on the exterior thereof that forms a ridge extending into the cavity along the length of the jacket; and a stack of fiber optic ribbons located in the cavity, each ribbon having a plurality of optical fibers arranged side-by-side with one another and coupled to one another in a common matrix, wherein corners of the ribbon stack pass by the ridge at intermittent locations along the length of the jacket, and wherein interaction between the ridge and the ribbon stack facilitates coupling of the ribbon stack to the jacket.
Abstract:
A fiber optic cable includes a jacket, an element of the cable interior to the jacket, and first and second powders. The element includes a first surface and a second surface. The cable further includes a third surface interior to the jacket and facing the first surface at a first interface and a fourth surface interior to the jacket and facing the second surface at a second interface. At least one of the third and fourth surfaces is spaced apart from the jacket. The first powder is integrated with at least one of the first and third surfaces at the first interface and the second powder integrated with at least one of the second and fourth surfaces at the second interface. The first interface has greater coupling than the second interface at least in part due to differences in the first and second powders.
Abstract:
A high-temperature and crack resistant optical communication cable is provided. The cable includes an extruded cable body formed from a polymer material defining a channel within the cable body. The cable includes a plurality of optical transmission elements located within the channel. The cable includes a reinforcement sheet wrapped around the plurality of optical transmission elements. The cable includes an adhesion barrier wrapped around the wrapped reinforcement sheet. The adhesion barrier layer is a substantially uninterrupted adhesion barrier layer such that the adhesion barrier layer acts to prevent substantial adhesion between the polymer material of the cable body and an outer surface of the wrapped reinforcement sheet.
Abstract:
A fiber optic cable includes a tube, a stack of fiber optic ribbons twisting along a lengthwise axis through the tube, a support, and water-blocking tape positioned at least partially around the stack, between the stack and the tube. The support and water-blocking tape provide an elevated portion of the water-blocking tape that is raised. As the stack twists along the lengthwise axis of the tube, corners of the stack interface with the elevated portion to provide intermittent frictional coupling between the stack and the tube.
Abstract:
A traceable cable assembly includes a traceable cable, a first connector at a first end of the traceable cable, and a second connector at a second end of the traceable cable assembly. The traceable cable has at least one data transmission element, a jacket at least partially surrounding the data transmission element, and an optical fiber extending along at least a portion of the length of the traceable cable. The optical fiber includes a first end having a first bend and a second end having a second bend. The first and second bends may be equal to or less than ninety degrees so that the optical fiber facilitates identification of the second connector when a launch light is injected in the first end of the optical fiber, and the optical fiber facilitates identification of the first connector when the launch light is injected in the second end of the optical fiber.
Abstract:
An optical cable is provided. The optical cable includes a tubular, elongate body having an inner surface defining a cavity extending between first and second ends of the elongate body and an optical transmission element located with the cavity. The optical cable includes a coupling or bonding structure non-permanently and non-rigidly joining the outer surface of the optical transmission element to the elongate body at a plurality of periodic contact zones such that relative movement between the optical transmission element and the elongate body is resisted.
Abstract:
A fiber optic cable includes a jacket forming a cavity therein, a stack of fiber optic ribbons located in the cavity, and a strength member embedded in the jacket. The jacket forms a ridge extending into the cavity lengthwise along the fiber optic cable. The ribbon stack is spiraled through the cavity such that corners of the ribbon stack pass by the ridge at intermittent locations along the length of the cable, where interactions between the ridge and the corners of the ribbon stack facilitate coupling of the ribbon stack to the jacket.
Abstract:
An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
Abstract:
A traceable cable assembly includes a traceable cable having at least one data transmission element, a jacket at least partially surrounding the data transmission element, and first and second tracing optical fibers extending along at least a portion of a length of the traceable cable. The traceable cable assembly also includes a connector provided at each end of the traceable cable. The first and second tracing optical fibers each have a light launch end and a light emission end. The light launch ends of the first and second tracing optical fibers each include a bend. The bend allows for launching of light into the light launch ends without disengaging the first or second connectors from corresponding connector receptacles.