Abstract:
A method of sharpening a cutting edge of a knife of a surgical instrument includes manipulating an end effector assembly of a surgical instrument such that first and second jaw members of the end effector assembly are disposed in a spaced-apart position, retaining the first and second jaw members in the spaced-apart position, advancing a knife of the surgical instrument to an extended position wherein the knife extends between the first and second jaw members, retaining the knife in the extended position, and sharpening a cutting edge of the knife.
Abstract:
A surgical instrument includes a housing, a movable handle, a trigger, a drive assembly operably coupled between the movable handle and an end effector assembly such that movement of the movable handle from an initial position to a compressed position manipulates the end effector assembly, and a linkage operably coupled between the trigger and a knife such that movement of the trigger from an un-actuated position to an actuated position rotates the linkage to deploy the knife relative to the end effector assembly. A drive housing of the drive assembly inhibits rotation of the linkage when the movable handle is disposed in the initial position and the trigger is disposed in the un-actuated position. The drive housing cams along a surface of the linkage to urge the linkage to rotate when the movable handle is returned towards the initial position, thereby returning the trigger towards the un-actuated position.
Abstract:
A forceps includes an end effector assembly having a stop and a plurality of overmold teeth within at least one jaw member. One (or both) of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes a stop molded within an insulative housing, and an insulator plate with the overmold teeth formed from plastic. The overmold teeth extend through openings within a sealing plate and protrude past the tissue sealing surface of the sealing plate. The stop primarily controls the gap distance between opposing jaw members by bearing most of an applied load and the overmold teeth assist in controlling the gap distance by bearing the remaining applied load.
Abstract:
A surgical instrument includes a shell having a housing and a shaft. The shell including first and second shell components configured to engage one another to form the shell, each of which is monolithically formed to include a housing portion and a shaft portion. Upon engagement of the first and second shell components with one another, the housing portions cooperate to form the housing of the shell while the shaft portions cooperate to form the shaft of the shell. An end effector assembly is operably coupled to the shaft at a distal end of the shaft. A handle assembly is operably coupled to the housing. A drive assembly disposed within the shell is operably coupled between the handle assembly and the end effector assembly such that actuation of the handle assembly manipulates the end effector assembly.
Abstract:
A surgical instrument includes a housing, a shaft extending therefrom and supporting an end effector, a knife, and a trigger assembly. The knife is configured to translate between retracted and extended positions. The trigger assembly includes a trigger movable relative to the housing between un-actuated and actuated positions, and a linkage including an apex and first and second bases. The apex is rotatably coupled to the housing about a pivot. The first base is disposed on a first side of the apex and coupled to the trigger. The second base is disposed on a second side of the apex and coupled to the knife. In response to movement of the trigger from the un-actuated to the actuated position, the first base is moved proximally, the apex is rotated about the pivot, and the second base is moved distally to move the knife from the retracted to the extended position.
Abstract:
A forceps includes an end effector assembly having first and second jaw members. Each of the jaw members includes a proximal flange extending therefrom. Each of the proximal flanges defines a bifurcated configuration having first and second spaced-apart flange components. The first flange component of the first jaw member is configured to pivotably engage the second flange component of the second jaw member via a first protrusion-aperture coupling. The first flange component of the second jaw member is configured to pivotably engage the second flange component of the first jaw member via a second protrusion-aperture coupling different from the first protrusion-aperture coupling. One or both of the jaw members is pivotable relative to the other about the first and second protrusion-aperture couplings between a spaced-apart position and an approximated position for grasping tissue therebetween.
Abstract:
A forceps includes an end effector assembly having a stop and a plurality of overmold teeth within at least one jaw member. One (or both) of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes a stop molded within an insulative housing, and an insulator plate with the overmold teeth formed from plastic. The overmold teeth extend through openings within a sealing plate and protrude past the tissue sealing surface of the sealing plate. The stop primarily controls the gap distance between opposing jaw members by bearing most of an applied load and the overmold teeth assist in controlling the gap distance by bearing the remaining applied load.
Abstract:
A method of manufacturing a shaft of a surgical instrument including forming a proximal segment of the shaft to include one or more features for operably engaging the shaft to a first component of the surgical instrument, forming a distal segment of the shaft to include one or more features for operably engaging the shaft to a second component of the surgical instrument and forming an intermediate segment of the shaft. The proximal segment is welded to a proximal end of the intermediate segment; and the distal segment is welded to a distal end of the intermediate segment. The proximal and distal segments are welded to the intermediate segment such that the one or more features thereof are aligned in a pre-determined orientation relative to one another.
Abstract:
An electrosurgical device is configured for connection to a source of electrosurgical energy and includes a housing and an electrical circuit supported within the housing. The electrical circuit is connectable to the source of electrosurgical energy. The electrical circuit is provided with at least one tactile enhancement feature. A controller is slidably supported on the housing. The controller is configured to exert a force on the electrical circuit to affect a change in the electrical circuit and to exert a force on a surface of the housing to engage the tactile enhancement feature and provide a tactile feedback to a user of the electrosurgical device as the controller is moved relative to the housing.
Abstract:
An end effector assembly for use with an instrument for sealing and cutting tissue includes a pair of opposing first and second jaw members movable relative to the to grasp tissue therebetween. Each jaw member including a jaw housing and an electrically conductive surface adapted to connect to a source of electrosurgical energy such that the electrically conductive surfaces are capable of conducting electrosurgical energy through tissue held therebetween to effect a tissue seal. One of the electrically conductive surfaces including a channel defined therein and extending along a length thereof that communicates with a nozzle disposed in the jaw housing. The nozzle is configured to direct high pressure fluid from a fluid source into the channel for cutting tissue grasped between the jaw members.