Abstract:
An ablation probe fixation apparatus for securing an ablation probe to tissue includes a base having a top surface and a skin-contacting bottom surface, wherein the base includes an adhesive layer disposed on the skin-contacting bottom surface. The fixation apparatus also includes a fixation member coupled to the top surface of the base. The base and the fixation member include an aperture defined therein for insertion of the ablation probe therethrough.
Abstract:
A directional reflector assembly includes a tubular shaft having a proximal end and a distal end and adapted to operably engage an electrosurgical ablation probe, and a conical aperture having a proximal open apex joined to a distal end of the tubular shaft, and a distal open base, wherein an interior volume of the tubular shaft is open to the conical aperture.
Abstract:
A microwave antenna assembly is disclosed. The antenna assembly includes an elongated member defining a longitudinal axis and having proximal and distal ends. The antenna assembly also includes an outer conductor and an inner conductor each disposed within the elongated member and extending along the longitudinal axis. A portion of the inner conductor is deployable relative to the outer conductor such that the antenna assembly may transition from a first configuration to a second configuration. The antenna assembly also includes an expandable sheath at least partially disposed about a distal portion of the inner conductor and defining at one or more lumens configured to couple to a supply of dielectric material used to regulate the expansion of the expandable sheath.
Abstract:
An electromagnetic surgical ablation probe having a coaxial feedline and cooling chamber is disclosed. The disclosed probe includes a dipole antenna arrangement having a radiating section, a distal tip coupled to a distal end of the radiating section, and a ring-like balun short, or choke, which may control a radiation pattern of the probe. A conductive tube disposed coaxially around the balun short includes at least one fluid conduit which provides coolant, such as dionized water, to a cooling chamber defined within the probe. A radiofrequency transparent catheter forms an outer surface of the probe and may include a lubricious coating.
Abstract:
A method of repairing an inner vessel wall includes the step of inserting at least a portion of a microwave ablation device into a vessel. The microwave ablation device includes an inner conductor disposed within an outer conductor and defines a longitudinal axis. The method also includes the steps of inserting a repairing sealant into the vessel such that the repairing sealant is disposed between an inner vessel wall and the outer conductor and expanding at least a portion of the outer conductor relative to the longitudinal axis to force at least a portion of the repairing sealant into the inner vessel wall. The method also includes the step of delivering energy to at least one of the inner conductor and the outer conductor to activate the repairing sealant to repair the inner vessel wall.
Abstract:
An ablation probe fixation apparatus for securing an ablation probe to tissue includes a base having a top surface and a skin-contacting bottom surface, wherein the base includes an adhesive layer disposed on the skin-contacting bottom surface. The fixation apparatus also includes a fixation member coupled to the top surface of the base. The base and the fixation member include an aperture defined therein for insertion of the ablation probe therethrough.
Abstract:
A device for the treatment of tissue with microwave energy includes an antenna assembly including outer and inner conductors, a sealing barrier, and a cooling system. The outer and inner conductors have a dielectric material interposed therebetween. The cooling system minimizes the likelihood that the antenna assembly will overheat.
Abstract:
A method of fabricating a microwave antenna assembly is disclosed. The fabrication method includes providing a proximal portion having an inner conductor and an outer conductor, the inner conductor extending at least partially therein. The method further includes providing a distal portion disposed distally of the proximal portion, with the inner conductor extending at least partially therein. A high strength material may be injected from an inflow slot to an outflow slot of the distal portion such that the material is disposed in-between the inner conductor and a ceramic layer. The material bonds the distal portion and the ceramic layer to the proximal portion while providing mechanical strength to the distal portion.
Abstract:
A method of fabricating a microwave antenna assembly is disclosed. The fabrication method includes providing a proximal portion having an inner conductor and an outer conductor, the inner conductor extending at least partially therein. The method further includes providing a distal portion disposed distally of the proximal portion, with the inner conductor extending at least partially therein. A high strength material may be injected from an inflow slot to an outflow slot of the distal portion such that the material is disposed in-between the inner conductor and a ceramic layer. The material bonds the distal portion and the ceramic layer to the proximal portion while providing mechanical strength to the distal portion.
Abstract:
A dielectric spacer for use during microwave ablation of tissue is disclosed. The dielectric spacer includes a housing having a predetermined thickness and a skin-contacting bottom surface. The housing is configured to be filled with a dielectric material having a predetermined dielectric permittivity. The housing is further configured to be placed on the tissue in proximity with at least one microwave antenna assembly, wherein the thickness and the dielectric permittivity are configured to shift a maximum voltage standing wave ratio of the at least one microwave antenna assembly.