Abstract:
A forceps includes a drive assembly and an end effector assembly having first and second jaw members movable between a spaced-apart position, a first approximated position, and a second approximated position. The drive assembly includes a drive housing and a drive bar. The proximal end of the drive bar is coupled to the drive housing, while the distal end of the drive bar is coupled to at least one of the jaw members. The drive housing and the drive bar are selectively movable in conjunction with one another between a first position and a second position to move the jaw members between the spaced-apart position and the first approximated position. The drive assembly is selectively activatable to move the drive bar independent of the drive housing from the second position to a third position to move the jaw members from the first approximated position to the second approximated position.
Abstract:
An endoscopic forceps includes an elongate shaft defining an instrument axis. An end effector includes first and second jaw members each supporting an opposed sealing surface for clamping tissue. At least one of the jaw members is movable relative to the instrument axis such that the jaw members are movable between a first spaced-apart configuration and a second closed configuration for grasping tissue. A cutting instrument includes a reciprocating blade translatable relative to the sealing surfaces to sever tissue clamped between the jaw members. The reciprocating blade contacts an undersurface of at least one of the jaw members when the jaw members are in the second configuration to define a gap distance between the sealing surfaces. A handle adjacent the proximal end of the elongate shaft is operable to induce motion in the jaw members, and an actuator is operable to selectively translate the reciprocating blade.
Abstract:
An endoscopic forceps includes an elongate shaft defining an instrument axis. An end effector includes first and second jaw members each supporting an opposed sealing surface for clamping tissue. At least one of the jaw members is movable relative to the instrument axis such that the jaw members are movable between a first spaced-apart configuration and a second closed configuration for grasping tissue. A cutting instrument includes a reciprocating blade translatable relative to the sealing surfaces to sever tissue clamped between the jaw members. The reciprocating blade contacts an undersurface of at least one of the jaw members when the jaw members are in the second configuration to define a gap distance between the sealing surfaces. A handle adjacent the proximal end of the elongate shaft is operable to induce motion in the jaw members, and an actuator is operable to selectively translate the reciprocating blade.
Abstract:
An ultrasonic surgical instrument is provided. The ultrasonic surgical instrument includes a housing having an elongated shaft extending therefrom. The shaft has a jaw member disposed at a distal end thereof. The jaw member is movable between an open configuration and a clamping configuration and includes a tissue contacting surface thereon. A cutting blade extends from a distal end of the shaft and operably couples to the housing and adjacent the jaw member to treat tissue. A selectively removable laminate liner is positionable over the tissue contacting surface of the jaw member and configured to prevent contact between the tissue contacting surface and the cutting blade when the cutting blade is treating tissue.
Abstract:
A surgical instrument includes an end effector including first and second jaw members movable relative to one another between a first, spaced-apart position and a second position proximate tissue. In the second position, the jaw members cooperate to grasp tissue therebetween. A first optical fiber is disposed within the first jaw member and is configured to provide a first signal, and a second optical fiber is disposed within the first jaw member and is configured to provide a second signal. A controller is coupled to the first and second fibers and is configured to determine the temperature and the strain of the first jaw member as a function of the first and second signals, respectively.
Abstract:
A forceps includes an end effector assembly having first and second jaw members moveable with respect to one another between an open position and a closed position. A knife channel having a body and a base is defined within each jaw member. A knife assembly includes a knife having a bifurcated distal end. The bifurcated end includes first and second cutting members each defining an opposed cutting surface and having a tab at a free end thereof for translation through the base of a knife channel. The knife is translatable into the channels when the jaw members are in the closed position such that the cutting members are approximated when translated through the channels. The knife is also translatable into the channels when the jaw members are in the open position such that the cutting members are flexed apart when translated through the jaw members.
Abstract:
An ablation system includes a source of electrosurgical energy, a source of coolant fluid, and an ablation electrode assembly operatively connected to the source of electrosurgical energy and fluidly-coupled to the source of coolant fluid. The ablation electrode assembly includes a hub defining a chamber therein and one or more electrically-conductive ablation needles extending from the hub. The ablation system also includes one or more delivery needles extending from the hub. The one or more delivery needles are selectively moveable from a first position, wherein the distal end of the delivery needle is disposed proximal to the distal end portion of the ablation needle, to at least a second position, wherein at least the distal end of the delivery needle is disposed distally beyond the distal end portion of the ablation needle.