Abstract:
A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.
Abstract:
A parallel plate capacitor includes a first polar plate (10), and a second polar plate disposed opposite to the first polar plate (10). The parallel plate capacitor further includes at least a pair of sensitive units disposed on a substrate forming the first polar plate (10); the sensitive units includes sensitive elements (21a, 21b, 22a, 22b) and element connecting arms (23a, 23b, 24a, 24b) connecting the sensitive elements (21a, 21b, 22a, 22b) to the first polar plate (10). The parallel plate capacitor further includes anchoring bases (30, 31, 32, 33) disposed on a substrate where the second polar plate is located; the anchoring bases (30, 31, 32, 33) are connected to the element connecting arms (23a, 23b, 24a, 24b) via cantilever beams (30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b); each element connecting arm (23a, 23b, 24a, 24b) is connected to at least two anchoring bases (30, 31, 32, 33), which are symmetric with respect to the element connecting arm. The parallel plate capacitor is more likely to be influenced by an external factor, thus being more likely to experience capacitance change. An acceleration sensor including the parallel plate capacitor is also provided.
Abstract:
A parallel plate capacitor includes a first polar plate (10), and a second polar plate disposed opposite to the first polar plate (10). The parallel plate capacitor further includes at least a pair of sensitive units disposed on a substrate forming the first polar plate (10); the sensitive units includes sensitive elements (21a, 21b, 22a, 22b) and element connecting arms (23a, 23b, 24a, 24b) connecting the sensitive elements (21a, 21b, 22a, 22b) to the first polar plate (10). The parallel plate capacitor further includes anchoring bases (30, 31, 32, 33) disposed on a substrate where the second polar plate is located; the anchoring bases (30, 31, 32, 33) are connected to the element connecting arms (23a, 23b, 24a, 24b) via cantilever beams (30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b); each element connecting arm (23a, 23b, 24a, 24b) is connected to at least two anchoring bases (30, 31, 32, 33), which are symmetric with respect to the element connecting arm. The parallel plate capacitor is more likely to be influenced by an external factor, thus being more likely to experience capacitance change. An acceleration sensor including the parallel plate capacitor is also provided.
Abstract:
Provided is a method for fabricating a multi-trench structure, including steps of: performing anisotropic etching on a semiconductor substrate so as to form a vertical trench; growing a first epitaxial layer on the semiconductor substrate in which the vertical trench has been formed, so that the first epitaxial layer covers the top of the vertical trench to form a closed structure; performing anisotropic and isotropic etching on the closed structure, so as to form a trench array, and to make the trench array communicate with the vertical trench, the trench array including a number of trenches or vias, upper portions of a number of trenches or vias being separated from each other, and lower portions thereof communicating with each other to form a cavity; and growing a second epitaxial layer to cover the trench array, so as to form a closed multi-trench structure. With two times of growth of the epitaxial layers, the multi-trench structure remains stable and solid in a fabricating process, which prevents phenomena of film breakage or falling off in the fabricating process.
Abstract:
A method of manufacturing a MEMS chip includes: providing a silicon substrate layer, the silicon substrate layer comprising a front surface configured to perform a MEMS process and a rear surface opposite to the front surface; growing a first oxidation layer mainly made of SiO2 on the rear surface of the silicon substrate layer by performing a thermal oxidation process; and depositing a first thin film layer mainly made of silicon nitride on the first oxidation layer by performing a low pressure chemical vapor deposition process.
Abstract:
A monitoring structure and a relevant monitoring method for the silicon wet etching depth are provided. The structure includes a wet etched groove formed on a monocrystalline silicon material with at least two top surfaces thereof being rectangular; and the top surface widths of the grooves are Wu and W1 respectively, Wu=du/0.71, and W1=du/0.71, where du is the maximum wet etching depth to be monitored, and d1 is the minimum of the wet etching depth to be monitored. The method includes: performing anisotropic wet etching on a monocrystalline silicon wafer according to a pattern with a monitoring pattern, forming an etched groove to be monitored and a structure for monitoring the depth of the groove, and then monitoring the structure to monitor the wet etching depth. The etching depth of the groove can be monitored with low costs, and a higher monitoring accuracy is obtained.
Abstract translation:提供了硅湿蚀刻深度的监测结构和相关监测方法。 该结构包括形成在单晶硅材料上的湿蚀刻槽,其至少两个顶表面是矩形; 并且槽的顶面宽度分别为Wu和W1,Wu = du / 0.71,W1 = du / 0.71,其中du是要监测的最大湿蚀刻深度,d1是湿蚀刻深度的最小值 被监视。 该方法包括:根据具有监测图案的图案在单晶硅晶片上进行各向异性湿蚀刻,形成待监测的蚀刻凹槽和用于监测凹槽深度的结构,然后监测结构以监测湿蚀刻 深度。 可以以低成本监测凹槽的蚀刻深度,并且获得更高的监视精度。
Abstract:
A monitoring structure and a relevant monitoring method for the silicon wet etching depth are provided. The structure includes a wet etched groove formed on a monocrystalline silicon material with at least two top surfaces thereof being rectangular; and the top surface widths of the grooves are Wu and Wl respectively, Wu=du/0.71, and Wl=du/0.71, where du is the maximum wet etching depth to be monitored, and dl is the minimum of the wet etching depth to be monitored. The method includes: performing anisotropic wet etching on a monocrystalline silicon wafer according to a pattern with a monitoring pattern, forming an etched groove to be monitored and a structure for monitoring the depth of the groove, and then monitoring the structure to monitor the wet etching depth. The etching depth of the groove can be monitored with low costs, and a higher monitoring accuracy is obtained.
Abstract translation:提供了硅湿蚀刻深度的监测结构和相关监测方法。 该结构包括形成在单晶硅材料上的湿蚀刻槽,其至少两个顶表面是矩形; 并且槽的顶面宽度分别为Wu和Wl,Wu = du / 0.71,Wl = du / 0.71,其中du是要监测的最大湿蚀刻深度,d1是湿蚀刻深度的最小值 被监视。 该方法包括:根据具有监测图案的图案在单晶硅晶片上进行各向异性湿蚀刻,形成待监测的蚀刻凹槽和用于监测凹槽深度的结构,然后监测结构以监测湿蚀刻 深度。 可以以低成本监测凹槽的蚀刻深度,并且获得更高的监视精度。