Abstract:
An inertial sensor includes a proof mass spaced apart from a surface of a substrate. The proof mass has a first section and a second section, where the first section has a first mass that is greater than a second mass of the second section. An anchor is coupled to the surface of the substrate and a spring system is interconnected between the anchor and the first and second sections of the proof mass. The spring system enables translational motion of the first and second sections of the proof mass in response to linear acceleration forces imposed on the inertial sensor in any of three orthogonal directions.
Abstract:
A physical quantity sensor includes a base substrate, a movable portion that is oscillatably provided around an axis while facing the base substrate and that is divided into a first movable portion and a second movable portion, a first fixed electrode that is disposed on the base substrate facing the first movable portion, and a second fixed electrode that is disposed on the base substrate facing the second movable portion. The first fixed electrode and the second fixed electrode are configured so as to offset at least a part of a difference between a first fringe capacitance, which is between the first movable portion and the first fixed electrode, and a second fringe capacitance, which is between the second movable portion and the second fixed electrode.
Abstract:
A z-axis micro-electro-mechanical detection structure, having a substrate defining a plane and a suspended mass carried by two anchorage elements. The suspended mass includes a translating mass, suspended over the substrate, mobile in a transverse direction to the plane and arranged between the anchorage elements and two tilting masses, each of which is supported by the anchorage elements through respective elastic anchorage elements so as to be able to rotate with respect to respective oscillation axes. The oscillation axes are parallel to each other to enable a translation movement of the translating mass. Fixed electrodes face at a distance the tilting masses or the translating mass so as to be able to detect displacement of the suspended mass as a result of external forces. Elastic supporting elements are arranged between the translating mass and the tilting masses to enable relative rotation between the translating mass and the tilting masses.
Abstract:
A parallel plate capacitor includes a first polar plate (10), and a second polar plate disposed opposite to the first polar plate (10). The parallel plate capacitor further includes at least a pair of sensitive units disposed on a substrate forming the first polar plate (10); the sensitive units includes sensitive elements (21a, 21b, 22a, 22b) and element connecting arms (23a, 23b, 24a, 24b) connecting the sensitive elements (21a, 21b, 22a, 22b) to the first polar plate (10). The parallel plate capacitor further includes anchoring bases (30, 31, 32, 33) disposed on a substrate where the second polar plate is located; the anchoring bases (30, 31, 32, 33) are connected to the element connecting arms (23a, 23b, 24a, 24b) via cantilever beams (30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b); each element connecting arm (23a, 23b, 24a, 24b) is connected to at least two anchoring bases (30, 31, 32, 33), which are symmetric with respect to the element connecting arm. The parallel plate capacitor is more likely to be influenced by an external factor, thus being more likely to experience capacitance change. An acceleration sensor including the parallel plate capacitor is also provided.
Abstract:
A microelectromechanical system (MEMS) accelerometer having separate sense and force-feedback electrodes is disclosed. The use of separate electrodes may in some embodiments increase the dynamic range of such devices. Other possible advantages include, for example, better sensitivity, better noise suppression, and better signal-to-noise ratio. In one embodiment, the accelerometer includes three silicon wafers, fabricated with sensing electrodes forming capacitors in a fully differential capacitive architecture, and with separate force feedback electrodes forming capacitors for force feedback. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a restoring force to the proof mass region. MEMS accelerometers with force-feedback electrodes may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning.
Abstract:
A fully differential microelectromechanical system (MEMS) accelerometer configured to measure Z-axis acceleration is disclosed. This may avoid some of the disadvantages in traditional capacitive sensing architectures—for example, less sensitivity, low noise suppression, and low SNR, due to Brownian noise. In one embodiment, the accelerometer comprises three silicon wafers, fabricated with electrodes forming capacitors in a fully differential capacitive architecture. These electrodes may be isolated on a layer of silicon dioxide. In some embodiments, the accelerometer also includes silicon dioxide layers, piezoelectric structures, getter layers, bonding pads, bonding spacers, and force feedback electrodes, which may apply a force to the proof mass region. Fully differential MEMS accelerometers may be used in geophysical surveys, e.g., for seismic sensing or acoustic positioning.
Abstract:
A physical quantity sensor includes an anchor portion, a movable portion displaceable in a height direction, a supporting portion rotatably connected to the anchor portion and the movable portion, and a detection portion. The supporting portion includes a first connection arm connecting the anchor portion and the movable portion to each other and a leg portion extending from the anchor portion in a direction opposite to the first connection arm, the leg portion being displaced in a direction opposite to a displacement direction of the movable portion when the supporting portion rotates. A stopper surface is disposed at a position to which a distal end portion of the leg portion is contactable when the leg portion is displaced in the direction opposite to the displacement direction of the movable portion. Displacement of the movable portion is restricted when the distal end portion of the leg portion contacts the stopper surface.
Abstract:
Disclosed herein is an inertial sensor. An inertial sensor 100 according to a preferred embodiment of the present invention is configured to include a plate-shaped membrane 110 on which a hole 200 penetrating in a thickness direction is formed, a mass body 120 disposed on a bottom of a central portion 113 of the membrane 110, and a post 130 disposed on a bottom of an edge 115 of the membrane 110 to support the membrane 110 and surrounding the mass body 120. By the configuration, the preferred embodiment of the present invention reduces damping force due to viscosity of air at the time of vibration by forming the hole 200 on the membrane 110 to increase displacement or amplitude of the mass body 120, thereby increasing sensitivity of the inertial sensor 100.
Abstract:
A microelectromechanical systems (MEMS) sensor (20) includes a substrate (26) and suspension anchors (34, 36) formed on a planar surface (28) of the substrate (26). The MEMS sensor (20) further includes a first movable element (38) and a second movable element (40) suspended above the substrate (26). Compliant members (42, 44) interconnect the first movable element (38) with the suspension anchor 34 and compliant members (46, 48) interconnect the second movable element (40) with the suspension anchor (36). The movable elements (38, 40) have an equivalent shape. The movable elements may be generally rectangular movable elements (38, 40) or L-shaped movable elements (108, 110) in a nested configuration. The movable elements (38, 40) are oriented relative to one another in rotational symmetry about a point location (94) on the substrate (26).
Abstract:
The present invention discloses a MEMS (Micro-Electro-Mechanical System, MEMS) accelerator with enhanced structural strength. The MEMS accelerator is located on a substrate, and it includes: multiple springs, wherein each spring includes: an anchor, fixed on the substrate; an extensible part, which has a fixed end fixed on the anchor, and a free end floating above the substrate; a proof mass, connected to the free ends of the springs; and multiple in-plane sense electrodes, wherein the extensible part is folded back and forth to form a substantially polygon shape as a whole, in which the fixed end is located within the middle one third length of one side of the substantially polygon shape, and the free end is located within the middle one third length of an opposite side of the substantially polygon shape.