摘要:
A procedure for starting up a fuel cell system that is disconnected from its primary load and that has air in both its cathode and anode flow fields includes a) connecting an auxiliary resistive load across the cell to reduce the cell voltage; b) initiating a recirculation of the anode flow field exhaust through a recycle loop and providing a limited flow of hydrogen fuel into that recirculating exhaust; c) catalytically reacting the added fuel with oxygen present in the recirculating gases until substantially no oxygen remains within the recycle loop; disconnecting the auxiliary load; and then d) providing normal operating flow rates of fuel and air into respective anode and cathode flow fields and connecting the primary load across the cell. The catalytic reaction may take place on the anode or within a catalytic burner disposed within the recycle loop. The procedure allows start-up of the fuel cell system without the use of an inert gas purge while minimizing dissolution of the catalyst and corrosion of the catalyst support during the start-up process.
摘要:
A procedure for starting up a fuel cell system that is disconnected from its primary load and has both its cathode and anode flow fields filled with air includes initiating a flow of air through the cathode flow field and rapidly displacing the air in the anode flow field by delivering a flow of fresh hydrogen containing fuel into the anode flow field, and thereafter connecting the primary load across the cell. Sufficiently fast purging of the anode flow field with hydrogen prior to connecting the cells to the load eliminates the need for purging the anode flow field with an inert gas, such as nitrogen, upon start-up.
摘要:
A procedure for shutting down an operating fuel cell system includes disconnecting the primary electricity using device and stopping the flow of hydrogen containing fuel to the anode, followed by quickly displacing the residual hydrogen with air by blowing air through the anode fuel flow field. A sufficiently fast purging of the anode flow field with air eliminates the need for purging with an inert gas such as nitrogen.
摘要:
A procedure for starting up a fuel cell system that is disconnected from its primary load and has both its cathode and anode flow fields filled with air includes initiating a flow of air through the cathode flow field and rapidly displacing the air in the anode flow field by delivering a flow of fresh hydrogen containing fuel into the anode flow field, and thereafter connecting the primary load across the cell. Sufficiently fast purging of the anode flow field with hydrogen prior to connecting the cells to the load eliminates the need for purging the anode flow field with an inert gas, such as nitrogen, upon start-up.
摘要:
An inlet fuel distributor (10-10d) has a permeable baffle (39, 54, 54a, 60) between a fuel supply pipe (11, 83) and a fuel inlet manifold (12, 53, 53a, 63) causing fuel to be uniformly distributed along the length of the fuel inlet manifold. A surface (53, 68) may cause impinging fuel to turn and flow substantially omnidirectionally improving its uniformity. Recycle fuel may be provided (25, 71) into the flow downstream of the fuel inlet distributor. During startup, fuel or inert gas within the inlet fuel distributor and the fuel inlet manifold may be vented through an exhaust valve (57, 86) in response to a controller (58, 79) so as to present a uniform fuel front to the inlets of the fuel flow fields (58).
摘要:
A cell stack assembly (102) coolant system comprises a coolant exhaust conduit (110) in fluid communication with a coolant exhaust manifold (108) and a coolant pump (112). A coolant inlet conduit (120) enables transportation of the coolant to the coolant inlet manifold. The coolant system further includes a bypass conduit (132) in fluid communication with the coolant exhaust manifold and the coolant inlet manifold, while a bleed valve (130) is in fluid communication with the coolant exhaust conduit and a source of gas. Operation of the bleed valve enables venting of the coolant from the coolant channels, and through a shut down conduit (124). An increased pressure differential between the coolant and reactant gases forces water out of the pores in the electrode substrates (107,109). An ejector (250) prevents air form inhibiting the pump. Pulsed air is blown (238,239,243,245) through the coolant channels to remove more water.
摘要:
A PEM flow field system of coolant medium for preventing the formation and accumulation of gas bubbles, having a critical viscous pressure drop therein is provided. The water transport plate includes a coolant flow field channel therein having an input port and an exit port. The coolant flow field channel includes at least one upward flow channel portion, at least one downward flow channel portion. Coolant medium is fluidly routed through the coolant flow field channel of the water transport plate at a flow rate which results in a viscous pressure drop that is greater than the buoyancy of a gas bubble trapped within the coolant flow field channel to prevent the accumulation thereof within the coolant flow field channel.
摘要:
A fuel cell includes a membrane electrode assembly (46) having a first reactant flow field (80) secured adjacent a first or second surface (48, 50) of the assembly (46) for directing flow of a first reactant adjacent the first or second surface of the assembly (46). The first reactant flow field (80) defines a plurality of two-pass circuits (82, 84, 86, 88), and each two-pass circuit (82) is in fluid communication with both a first reactant inlet (90) for directing the first reactant into the fuel cell (12), and with a first reactant outlet (92) for directing the first reactant out of the fuel cell (12). The plurality of two-pass circuits (82) facilitate water movement (112) toward the reactant inlet (90) to aid in passive maintenance of fuel cell (12) water balance.
摘要:
A fuel cell includes a plurality of power-producing electrode-electrolyte assemblies and heat-conducting elements. Cathode air supplied to the fuel cell is heated inside the fuel cell by fuel cell by-product heat via the heat-conducting elements.
摘要:
A PEM fuel cell system includes a PEM fuel cell that has an input and output port each for fuel or reformate, process air and coolant. A predetermined fraction of volume of moistened exhaust air leaving the air output port of the fuel cell is diverted back and combined with fresh, air at ambient temperature entering the air input port of the PEM fuel cell to maintain water balance in the fuel cell at high ambient operating temperatures. The recycle-to-air vent ratio is controlled by a processor which adjusts the recycle flow based on the ambient temperature and the power level of the fuel cell.