摘要:
Heat sink structures employing carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink, where the nanotubes are cut to essentially the same length over the surface of the structure, are disclosed. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface having high axial and lateral thermal conductivities.
摘要:
Heat sink structures employing multi-layers of carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. In one embodiment, the nanotubes are cut to essentially the same length over the surface of the structure. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
摘要:
Heat sink structures employing carbon nanotube or nanowire arrays exposed from both opposite surfaces of the structure to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. In one embodiment, the nanotubes are cut to essentially the same length over the surface of the structure. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
摘要:
Heat sink structures employing mutli-layers of carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. In one embodiment, the nanotubes are cut to essentially the same length over the surface of the structure. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
摘要:
A new sensing technology for chemical/biomolecular sensors is provided. One such sensor detects molecular hydrogen (H2) using nanoelectronic components. A tiny, low-cost nanosensor chip can offer: (i) performance that matches or exceeds that of existing technology, (ii) plug-and-play simplicity with both digital and analog control systems, and (ii) the small size and low power consumption needed for wireless integration.
摘要翻译:提供了一种用于化学/生物分子传感器的新型传感技术。 一种这样的传感器使用纳米电子部件检测分子氢(H 2 N 2)。 一个小型,低成本的纳米传感器芯片可以提供:(i)匹配或超过现有技术的性能,(ii)数字和模拟控制系统的即插即用简单性,以及(ii)小尺寸和低 无线集成所需的功耗。