摘要:
In a method for predicting failure of a disc drive during operation of the disc drive, a write fault count is maintained that corresponds to write faults encountered during write operations to a disc of the disc drive. Additionally, a frequency domain representation of a position error signal of a head of the disc drive is obtained. Finally, failure of the disc drive is predicted based on the write fault count and the frequency domain representation of the position error signal. Another aspect of the present invention relates to a disc drive that is capable of performing the above-described method.
摘要:
A data zone optimization method and architecture for optimizing the location of the data zone on a data storage disk is disclosed. The data zone is preferably biased toward the outer diameter of the disk, and is referenced to a data zone starting location established proximate a load/unload ramp apparatus. An optimum starting location for the data zone of an initially unformatted data storage disk is preferably determined by contacting the load/unload ramp with the transducer assembly, disengaging the transducer assembly from the ramp, and writing servo information indicative of the data zone starting location at a disk location proximate the ramp and transducer assembly contact point. Servo information indicative of the data zone is written at inner diameter disk location with respect to the optimum data zone starting location. The optimized data zone architecture may have a predetermined or variable data storage capacity.
摘要:
An actuator structure includes a flexure suspension with a flag appendage having a cantilevered portion extending parallel to the arm-suspension to form a gap therebetween. The flex cable that connects to the device electronics has an elongated portion secured to the side of the arm-suspension assembly presenting termination pads, which extend to the cable edge, along the elongated portion side and in alignment with the gap between arm-suspension and flag. The leads extending from the transducer are fanned out and extend across the gap. The leads are bonded to the arm-suspension and to the lead cantilevered portion immediately adjoining the gap. To terminate the leads, the flag is folded down 90 degrees, bringing the leads into contact with the te nation pads where they are ultrasonically bonded. The flag is then bent toward its original position causing the fine lead wires to separate between the flag cantilever portion bond and the ultrasonically bonded termination. As the flag is bent back, the fragile connections, between flag and flexure, rupture and the flag is separated from the balance of the arm-suspension assembly. In the assembled condition, the bonding of the fanned out lead wires to the arm-suspension provides strain relief.
摘要:
An actuator structure includes a flexure suspension with a flag appendage having a cantilevered portion extending parallel to the arm-suspension to form a gap therebetween. The flex cable that connects to the device electronics has an elongated portion secured to the side of the arm-suspension assembly presenting termination pads, which extend to the cable edge, along the elongated portion side and in alignment with the gap between arm-suspension and flag. The leads extending from the transducer are fanned out and extend across the gap. The leads are bonded to the arm-suspension and to the lead cantilevered portion immediately adjoining the gap. To terminate the leads, the flag is folded down 90 degrees, bringing the leads into contact with the termination pads where they are ultrasonically bonded. The flag is then bent toward its original position causing the fine lead wires to separate between the flag cantilever portion bond and the ultrasonically bonded termination. As the flag is bent back, the fragile connections, between flag and flexure, rupture and the flag is separated from the balance of the arm-suspension assembly. In the assembled condition, the bonding of the fanned out lead wires to the arm-suspension provides strain relief.
摘要:
A direct access storage device (DASD) includes a plurality of motion limiters and/or a continuous motion limiter projecting from at least one of the base and cover, each motion limiter having faces disposed in close proximity to and confronting opposite surfaces of a data storage disk adjacent a peripheral portion of the disk that does not contain data. Preferably, the motion limiters are disposed at several points about the periphery of the disk, and may be incorporated in a load/unload ramp and/or side rails of the DASD. The faces of the motion limiters are disposed relative to the disk so that when the DASD is subjected to an acceleration, the disk contacts at least one of the faces only at the peripheral portion of the disk, outside the data zone. Accordingly, the motion limiters prevent data zone and spindle bearing damage when the DASD is dropped.