Abstract:
The piston has a contoured combustion bowl with a radially inner shelf portion that is spaced axially away from the radially outer lip portion a first axial distance, and a swirl pocket that extends radially from the radially inner shelf portion and defines a lower axial extremity that is spaced axially away from the radially outer lip portion a second axial distance that is greater than the first axial distance. The swirl pocket defines a tangent extending in the radially outer direction, forming an acute angle with the radially outer lip portion ranging from 70 degrees to 80 degrees.
Abstract:
A method for estimating a peak cylinder pressure associated with operation of an internal combustion engine may include receiving, in a cylinder combustion model, a fuel signal and an air signal. The cylinder combustion model may be configured to estimate at a first crankshaft angle, a first mass fuel burn rate and a first burned fuel-air ratio associated with combustion. The cylinder combustion model may also be configured to estimate at a second crankshaft angle, a combustion ignition delay associated with the combustion, and estimate at the second crankshaft angle, a start of combustion associated with the combustion of the fuel and the air supplied to the cylinder. The cylinder combustion model may be further configured to estimate, based at least in part on the start of combustion, a peak cylinder pressure associated with the combustion of the fuel and the air supplied to the cylinder.
Abstract:
A piston for a compression ignition internal combustion engine includes a piston body having a combustion face defining a combustion bowl, and the combustion face including a compound bowl surface and a compound rim surface. The combustion face is profiled to balance a combustion efficiency property of the piston with emissions properties of the piston. A ratio of a diameter of the combustion bowl to a diameter of the cylinder bowl bore is from 0.68 to 0.74. Other dimensional and proportional features of the piston support low smoke and NOx production during operation.
Abstract:
The piston has a contoured combustion bowl with a radially inner shelf portion that is spaced axially away from the radially outer lip portion a first axial distance, and a swirl pocket that extends radially from the radially inner shelf portion and defines a lower axial extremity that is spaced axially away from the radially outer lip portion a second axial distance that is greater than the first axial distance. The swirl pocket defines a tangent extending in the radially outer direction, forming an acute angle with the radially outer lip portion ranging from 70 degrees to 80 degrees.
Abstract:
A system for estimating engine performance is configured to receive, via a cylinder combustion model, a cylinder pressure of a cylinder associated with operation of an internal combustion engine. The system estimates a liner bending moment based at least in part on the cylinder pressure, generates a piston side load associated with the cylinder based at least in part on the liner bending moment, and estimates a piston friction value for a piston associated with the cylinder. The piston friction value may be based at least in part on the cylinder pressure and an engine speed of the internal combustion engine. The system receives, via a convective heat transfer model, an exhaust heat transfer value indicative of a cumulative heat transfer from an exhaust manifold, and estimates an engine torque value based at least in part on the exhaust heat transfer value.
Abstract:
A system for estimating engine performance is configured to receive, via a cylinder combustion model, a cylinder pressure of a cylinder associated with operation of an internal combustion engine. The system estimates a liner bending moment based at least in part on the cylinder pressure, generates a piston side load associated with the cylinder based at least in part on the liner bending moment, and estimates a piston friction value for a piston associated with the cylinder. The piston friction value may be based at least in part on the cylinder pressure and an engine speed of the internal combustion engine. The system receives, via a convective heat transfer model, an exhaust heat transfer value indicative of a cumulative heat transfer from an exhaust manifold, and estimates an engine torque value based at least in part on the exhaust heat transfer value.
Abstract:
A method for controlling an engine in response to an increase in a load on the engine is disclosed. The engine includes a cylinder with a piston slidably disposed therein between a top dead center position and a bottom dead center position. The cylinder and the piston define a combustion chamber. The method includes initiating a first injection event and a second injection event. The first injection event includes introducing a first predetermined quantity of fuel into the combustion chamber at least 5 degrees before the piston reaches the top dead center position. The second injection event includes introducing a second predetermined quantity of fuel into the combustion chamber not earlier than 30 degrees after the piston moves away from the top dead center position.
Abstract:
A system may include at least one processor configured to receive a fuel signal indicative of an amount of fuel supplied to a cylinder of an internal combustion engine, receive an air signal indicative of a quantity of air supplied to the cylinder, and estimate a mean effective pressure in the cylinder based at least in part on the fuel signal and the air signal. The system may estimate an exhaust gas temperature for exhaust gas entering an exhaust manifold associated with the internal combustion engine, generate a rate of temperature change value for the exhaust manifold based at least in part on the exhaust gas temperature, generate an estimated exhaust manifold temperature based at least in part on the rate of temperature change value for the exhaust manifold, and estimate an exhaust gas temperature for exhaust gas exiting the exhaust manifold and entering a turbine of a turbocharger.
Abstract:
A method for estimating a peak cylinder pressure associated with operation of an internal combustion engine may include receiving, in a cylinder combustion model, a fuel signal and an air signal. The cylinder combustion model may be configured to estimate at a first crankshaft angle, a first mass fuel burn rate and a first burned fuel-air ratio associated with combustion. The cylinder combustion model may also be configured to estimate at a second crankshaft angle, a combustion ignition delay associated with the combustion, and estimate at the second crankshaft angle, a start of combustion associated with the combustion of the fuel and the air supplied to the cylinder. The cylinder combustion model may be further configured to estimate, based at least in part on the start of combustion, a peak cylinder pressure associated with the combustion of the fuel and the air supplied to the cylinder.
Abstract:
A piston for a compression ignition internal combustion engine includes a piston body having a combustion face defining a combustion bowl, and the combustion face including a compound bowl surface and a compound rim surface. The combustion face is profiled to balance a combustion efficiency property of the piston with emissions properties of the piston. A ratio of a diameter of the combustion bowl to a diameter of the cylinder bowl bore is from 0.68 to 0.74. Other dimensional and proportional features of the piston support low smoke and NOx production during operation.