Abstract:
A main valve and method assembling for use on a machine is disclosed. The main valve may comprise a body, a free wheeling valve, a bypass valve, a flow divider valve, a free wheeling pilot valve, and a flow divider bypass pilot control valve. Each valve may be disposed inside the body. The body may define a plurality of ports and channels between the valves. The free wheeling valve may be operable between a free wheeling mode and a drive assist mode. The bypass valve may have a flow dividing mode that permits fluid communication between the free wheeling valve and the flow divider valve, and a bypass mode that permits fluid communication between the free wheeling valve and first and second bypass channels.
Abstract:
A main valve and method assembling for use on a machine is disclosed. The main valve may comprise a body, a free wheeling valve, a bypass valve, a flow divider valve, a free wheeling pilot valve, and a flow divider bypass pilot control valve. Each valve may be disposed inside the body. The body may define a plurality of ports and channels between the valves. The free wheeling valve may be operable between a free wheeling mode and a drive assist mode. The bypass valve may have a flow dividing mode that permits fluid communication between the free wheeling valve and the flow divider valve, and a bypass mode that permits fluid communication between the free wheeling valve and first and second bypass channels.
Abstract:
An energy recovery system for a machine is disclosed. The energy recovery system may have a boom circuit with at least a one linear actuator configured to move a work tool, and a boom accumulator configured to selectively collect pressurized fluid from the at least one linear actuator and to discharge pressurized fluid back to the at least one linear actuator. The energy recovery system may also have a swing circuit with a swing motor configured to move the work tool, and a swing accumulator configured to selectively collect pressurized fluid from the swing motor and discharge pressurized fluid back to the swing motor. The energy recovery system may further have a common accumulator passage fluidly connecting the boom accumulator and the swing accumulator.
Abstract:
An energy recovery system is disclosed for use with a hydraulic machine. The energy recovery system may have a tank, a pump configured to draw fluid from the tank and pressurize the fluid, an actuator, and an actuator control valve movable to direct pressurized fluid from the pump to the actuator and from the actuator to the tank to move the actuator. The energy recovery system may also have a motor mechanically connected to a rotary device and configured to selectively receive fluid discharged from the actuator, and at least one valve movable to selectively redirect fluid exiting the motor back to the actuator.