Abstract:
A work machine includes a frame, a traction system supporting the frame, an implement system supported by the frame, and a hydraulic system. The hydraulic system includes a hydraulic oil tank, a control circuit, an oil cooler, and a cooler bypass valve assembly. The cooler bypass valve assembly is connected to the control circuit by a control circuit return line, and includes an unloading valve configured to allow hydraulic oil to flow from the control circuit return line to the hydraulic oil tank if a pressure of hydraulic oil in the control circuit return line exceeds a first threshold, a backpressure valve configured to allow hydraulic oil to flow from the return line to the oil cooler through an oil cooler inlet line if a pressure of hydraulic in the oil control circuit return line exceeds a second threshold, and an orifice configured to limit the flow of hydraulic oil through the backpressure valve.
Abstract:
Cavitation that occurs within a pump of a machine, such as truck or other work machine, can potentially damage the pump and/or other components of the machine. The machine can have a cavitation monitor configured to detect cavitation and/or cavitation damage associated with the pump based on vibration data, speed data associated with mechanical movements of the pump, and operating data associated with the machine overall. If the cavitation monitor detects cavitation and/or cavitation damage, the cavitation monitor can cause corresponding alerts to be displayed to a machine operator or other user.
Abstract:
Swing kinetic and boom potential energy may be recovered in a machine having a movable work tool, a swing motor for rotating the work tool, a hydraulic cylinder for raising and lowering the work tool, a pump selectively connected to the swing motor and the hydraulic cylinder, and a power source outputting power to drive the pump. The machine may further include a first accumulator, a swing charge valve having a charge set pressure, and a boom charge valve. The swing charge valve selectively fluidly connect the swing motor to the first accumulator, and open to fluidly connect the swing motor to the first accumulator when a swing motor fluid pressure is greater than a charge set pressure of the swing charge valve. The boom charge valve may selectively fluidly connect a head-end chamber of the hydraulic cylinder to the first accumulator when the work tool is lowered.
Abstract:
A hydraulic system for a machine is disclosed. The system may have a pump and a motor driven by pressurized fluid from the pump. An accumulator is configured to receive fluid discharged from the motor and to discharge fluid to the motor. The system may include a first valve to selectively communicate the higher pressure of conduits coupled between the pump and motor to the accumulator. A second valve and a third valve can be used to facilitate charging and discharging of the accumulator. The system may include a controller configured to implement a plurality of modes of operation, which each mode of operation may include a different combination of motor deceleration and motor acceleration segments during which the accumulator receives and discharges fluid, respectively. An input may be used to determine the segment of the work cycle.
Abstract:
A hydraulic control system is disclosed for use with a machine. The hydraulic control system may have a tank, a pump, an actuator, and a control valve configured to direct fluid from the pump to the actuator and from the actuator to the tank. The hydraulic control system may also have a pressure sensor to generate a first signal indicative of a pressure differential across the control valve, an operator input device to generate a second signal indicative of a desired movement of the actuator, and a controller. The controller may be configured to make a first determination of an opening amount of the control valve based on the second signal, and to make a second determination based on the first signal of whether the opening amount will result in overspeeding of the actuator. The controller may also be configured to reduce the opening amount based on the second determination.
Abstract:
A method and system for accumulating and using recovered hydraulic energy that includes a hydraulic actuator and a pump configured to supply pressurized fluid to the hydraulic actuator. An energy recovery system includes a hydraulic motor, a charge valve and an accumulator configured to store fluid from the hydraulic actuator. The charge valve is operatively connected between the hydraulic actuator and the accumulator and between the accumulator and the hydraulic motor and is configured to place the hydraulic actuator in fluid communication with the accumulator and to place the accumulator in fluid communication with the hydraulic motor. A directional valve is operatively connected between the pump and the hydraulic actuator. The directional valve is configured to place the pump in fluid communication with the hydraulic actuator and to direct the flow of hydraulic fluid exiting the hydraulic actuator to the charge valve in an energy recovery mode.
Abstract:
A hydraulic control system for a machine is disclosed. The hydraulic control system includes a swing control valve coupled between the swing motor, the pump and the tank to selectively control a fluid flow between the pump and the swing motor. The hydraulic control system includes a first conduit coupled between a first port of the swing control valve and a first chamber port of the swing motor. Further, a second conduit is coupled between a second port of the swing control valve and a second chamber port of the swing motor. A first chamber valve and a second chamber valve coupled to the first conduit and the second conduit and movable between a first open position, a second open position and a closed position. A controller is configured to selectively move one of the first and second chamber valves to reduce the fluid flow between the swing motor and the tank such that the pressurized flow discharged from the swing motor is directed to an accumulator fluidly coupled to each of the first and second conduits.
Abstract:
A hydraulic control system for a machine is disclosed. The hydraulic control system may have a tank, a pump, and a fluid actuator. The hydraulic control system may further have an accumulator configured to selectively receive pressurized fluid discharged from the fluid actuator and selectively supply pressurized fluid to the fluid actuator. The hydraulic control system may also have a pressure sensor configured to generate a signal indicative of a pressure of the accumulator, a charge valve, a discharge valve, and a controller in communication with the control valve, the charge valve, and the discharge valve. The controller may be configured to detect stall of the fluid actuator, to make a comparison of the pressure of the accumulator with a threshold pressure, and to selectively move the charge valve to charge the accumulator or move the discharge valve to discharge the accumulator during the stall based on the comparison.
Abstract:
The present invention pertains to method for monitoring operation of a hydraulic system, in particular of a hydraulic system of a working machine, having at least one hydraulic actuator. The method comprises a step of determining a predefined operating condition of the hydraulic system; a step of determining an input power parameter being indicative of a power provided by an engine to the hydraulic system during the predetermined operating condition; a step of determining an output power parameter being indicative of a power provided by the hydraulic actuator during the predetermined operating condition; and a step of determining a fault condition of the hydraulic system based on the input power parameter and the output power parameter.
Abstract:
A hydraulic system is disclosed for assisting starting of a machine having an engine. The hydraulic system may include a work tool, a pump driven by the engine to pressurize fluid, and an actuator configured to receive pressurized fluid from the pump and move the work tool. The hydraulic system may also include an accumulator configured to selectively receive pressurized fluid from the pump and from the actuator, an electric starter configured to start the engine, and a motor selectively supplied with fluid from the accumulator to assist the electric starter in starting the engine.