摘要:
An electrolyte for non-aqueous electrolyte battery containing at least one compound selected from the group consisting of lithium difluoro(bis(oxalato))phosphate, lithium tetrafluoro(oxalato)phosphate and lithium difluoro(oxalato)borate as a first compound and at least one siloxane compound represented by the general formula (1) or the general formula (2) as a second compound in the electrolyte is disclosed. In addition to the improvement of initial characteristic, this electrolyte shows a tendency that storage stability, low temperature characteristic, etc. are superior, and exhibits well-balanced, superior, performances as a whole battery.
摘要:
An electrolytic solution for a nonaqueous electrolyte battery according to the present invention includes: (I) at least one kind of silane compound represented by the following general formula (1); (II) at least one kind selected from the group consisting of a cyclic sulfonic acid compound and a cyclic sulfuric ester compound; (III) a nonaqueous organic solvent; and (IV) a solute. The nonaqueous electrolyte battery with this electrolytic solution achieves a good balance between improvement of high-temperature storage characteristics under high-temperature conditions of 70° C. or higher and reduction of gas generation during high-temperature storage. Si(R1)x(R2)4-x (1) In the general formula (1), R1 is each independently a carbon-carbon unsaturated bond-containing group; R2 is each independently selected from a fluorine group and a C1-C10 linear or C3-C10 branched alkyl group which may have a fluorine atom and/or an oxygen atom; and x is an integer of 2 to 4.
摘要:
An object of the present invention is to provide an electrolytic solution for nonaqueous electrolytic solution batteries capable of showing high output characteristics at low temperature even after the batteries are used to some extent, and a nonaqueous electrolytic solution batteries. The present invention is characterized in the use of an electrolytic solution for nonaqueous electrolytic solution batteries, the electrolytic solution including a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), a nonaqueous organic solvent, and a solute. Furthermore, the electrolytic solution may contain a difluoro ionic complex (1-Trans) in a trans configuration or a tetrafluoro ionic complex (5). wherein in (1-Cis), is
摘要:
To provide a material suitable for a nonaqueous electrolyte battery having high-temperature durability. An ionic complex of the present invention is represented by any of the following formulae (1) to (3). For example, in the formula (1), A is a metal ion, a proton, or an onium ion; M is any of groups 13 to 15 elements. R1 represents a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom, or —N(R2)—. R2 at this time represents hydrogen atom, alkali metal atom, a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom. R2 can also have a branched chain or a ring structure when the number of carbon atoms is 3 or more. Y is carbon atom or sulfur atom. a, o, n, p, q, and r are each predetermined integers.
摘要:
To provide a manufacturing method with which lithium difluorophosphate powder can be recovered from a lithium difluorophosphate solution. A method for manufacturing lithium difluorophosphate powder is used which includes the steps of precipitating solid lithium difluorophosphate by adding a poor solvent to a solution in which lithium difluorophosphate is dissolved in a main solvent, and obtaining lithium difluorophosphate powder by solid-liquid separation of the solid lithium difluorophosphate from the liquid containing the main solvent and the poor solvent, wherein the relational expression between the octanol/water partition coefficient PP of the main solvent and the octanol/water partition coefficient PA of the poor solvent is defined by the following formula (1). PA≥−4/3×PP+1.2 (1):
摘要:
What is disclosed is a non-aqueous electrolyte for non-aqueous electrolyte battery including a non-aqueous solvent and at least lithium hexafluorophosphate as a solute. This electrolyte is characterized by containing at least one siloxane compound represented by the general formula (1) or the general formula (2). This electrolyte has a storage stability which is improved than electrolytes prepared by adding conventional siloxane compounds.