Abstract:
A semiconductor memory device includes a plurality of repair fuse units configured to program repair target addresses respectively for repair target memory cells, wherein at least one of the repair fuse units is programmed with data information used for different purposes from the repair target addresses, a plurality of address comparison units each configured to compare an access target address with a corresponding address of the repair target addresses and determine whether to perform a repair operation or not, and a data transfer unit configured to transfer the data information to a corresponding circuit of the semiconductor memory device.
Abstract:
A semiconductor memory device and method to perform a read operation and a write operation effectively. The semiconductor memory device and method includes: performing a first operation for inputting and outputting data in response to a first clock signal having a first frequency; and performing a second operation for storing and reading out the data in a core block in response to a second clock signal having a second frequency, wherein the first frequency is different from the second frequency.
Abstract:
A bit line equalizing signal generator of a semiconductor memory device uses a supply voltage and a pumping voltage in stages during a period where a bit line equalizing signal is enabled, thereby enhancing an equalizing speed and an active speed while minimizing power consumption. The semiconductor memory device includes a bit line equalizing signal generating unit configured to drive an output terminal with the supply voltage during a first activation period at the beginning of the period where the bit line equalizing signal is enabled, and to drive the output terminal with the pumping voltage higher than the supply voltage during a second activation period following the first activation period, thereby outputting the bit line equalizing signal, and a bit line equalizing unit configured to equalize a bit line pair in response to the bit line equalizing signal.
Abstract:
An internal voltage generating circuit of a semiconductor device includes a first voltage driver configured to pull up an internal voltage terminal during a period where a level of the internal voltage terminal is lower than a target level, and a second voltage driver configured to pull up the internal voltage terminal during a predefined time in each period corresponding to a frequency of an external clock.
Abstract:
A semiconductor memory device is capable of writing data in phase with external data to a memory cell regardless of which memory cell the data is written to. The semiconductor memory device includes a scrambler, a write selector and a read selector. The scrambler is configured to output a control signal activated when an address for accessing a memory cell of a complementary bit line is inputted. The write selector is configured to selectively transmit data of a write path in response to the control signal. The read selector is configured to selectively transmit data of a read path in response to the control signal
Abstract:
A semiconductor device includes a pads for receiving a reference voltage and input signals from an external device, a unit gain buffer for receiving the reference voltage as an input, input buffers for identifying a corresponding one of the input signals based on an internal reference voltage outputted from the unit gain buffer, external electrostatic discharge protectors connected to a transmission path of the reference voltage and transmission paths of input signals, and internal electrostatic discharge protectors connected to the transmission path of the reference voltage and the transmission paths of the input signals.
Abstract:
A semiconductor integrated circuit includes: a fuse; a first driving unit configured to drive a sensing node in response to a first fuse sensing signal; a second driving unit configured to drive the sensing node in response to a second fuse sensing signal, wherein the second driving unit and the fuse form a driving path; a bypass resistor unit connected in parallel with the fuse; and a sensing unit configured to sense a programming state of the fuse in response to a voltage of the sensing node.
Abstract:
A power up signal generation circuit transits a power up signal at a predetermined target voltage level by providing a predetermined hysteresis characteristic to the target voltage level of a power supply voltage corresponding to the power up signal. The power up signal generation circuit includes a first voltage detection unit that detects a first target voltage level of a power supply voltage to output a detection signal. The circuit also includes a second voltage detection unit that detects a second target voltage level of the power supply voltage in response to a power up signal to output a control signal, wherein the second target voltage level is lower than the first target voltage level. A power up signal drive unit of the circuit activates the power up signal in response to the detection signal and drives the power up signal in response to the control signal.
Abstract:
A semiconductor device includes a reference voltage generating unit configured to produce a reference voltage by dividing a voltage difference between a positive clock terminal and a negative clock terminal, and a logic determination unit configured to determine a logic level of an external signal based on the reference voltage.
Abstract:
Provided is a technology for monitoring the electrical resistance of an element such as a fuse whose resistance is changed due to the electrical stress among internal circuits included in a semiconductor device. The present invention provides a monitoring circuit to monitor the change in the device specification during the device is being programmed and after the device is programmed. The present invention enables the verification of an optimized condition to let the device have a certain electrical resistance, by comparing the load voltage and the fuse voltage with the reference voltage that can sense the range of resistance variation more precisely. Also, it can guarantee device reliability since it is still possible to sense electrical resistance after the electrical stress is being given. Also, the present invention can increase the utility of the fuse by possessing an output to monitor electrical resistance sensed inside of the semiconductor.