Abstract:
A scanning device for simplex and duplex scanning. The device may include a scan head for capturing content appearing on a page; a substantially C-shaped first scan path for simplex scanning, the first scan path adapted to guide the page relative to the scan head for scanning a first side of the page; a second scan path for duplex scanning, the second scan path adapted to guide the page relative to the scan head for scanning a first side of the page and a second side of the page; a path diverter, the path diverter adapted to direct the page to the first path or the second path; and a controller for controlling the first and second scan paths and the diverter. The second scan path forms a loop for moving the first and second sides of the page so that each is temporarily disposed adjacent the scan head.
Abstract:
An imaging apparatus includes an automatic document feeder having a media feeding section, a media collecting section and a media conveying path extending from the media feeding section to the media collecting section. The imaging apparatus includes a scan head adjacent to the automatic document feeder. The scan head is moveable to a raised position aligned with a portion of the media conveying path for scanning a media sheet in the portion of the media conveying path.
Abstract:
Disclosed are a method and a computer program product for dissipating heat produced in a scan head assembly of an imaging apparatus during scanning of media sheets in the imaging apparatus. The method includes determining at least one of a temperature of the scan head assembly and a media sheet scan count. The method further includes moving the scan head assembly between a first position of the scan head assembly and a second position of the scan head assembly for dissipating heat, based on at least one of the temperature of the scan head assembly and the media sheet scan count.
Abstract:
Disclosed are a method and a computer program product for dissipating heat produced in a scan head assembly of an imaging apparatus during scanning of media sheets in the imaging apparatus. The method includes determining at least one of a temperature of the scan head assembly and a media sheet scan count. The method further includes moving the scan head assembly between a first position of the scan head assembly and a second position of the scan head assembly for dissipating heat, based on at least one of the temperature of the scan head assembly and the media sheet scan count.
Abstract:
Method and image scanning apparatus comprising an image capture unit having an illumination assembly for generating input light; a printed circuit board mounted to the image capture unit, a cooling unit generating an airflow which cools the illumination assembly of the image capture unit as well as the critical components mounted on the printed circuit board and the optical components of the image capture unit; and an adjustable baffle member moveably mounted to the frame of the image scanning apparatus for controlling the path of the airflow relative to the lamp. The cooling unit comprises at least one fan with the fan generating airflow for cooling the lamp of image capture unit. The baffle member is adjustable to control the airflow generated by the fan such that the airflow generated by the fan is redirected downward and passes the airflow under the image capture unit, thereby effectively and evenly cooling the lamp and redirecting contaminants to the end of the image scanning apparatus enclosure opposite the image capture unit.
Abstract:
A detachable transparent plate for a scan head assembly in a document scanning system that allows an operator to detach the transparent plate from the scan head assembly located above a media feed path to clean a top face of the transparent plate and easily reattach it to the scan head assembly. The scan head assembly has an optical system and a sealing member detachably mounted to a bottom end of the optical system. The transparent plate is received and supported by the sealing member and defines a portion of a bottom surface of the sealing member. The sealing member is detachable from the bottom end of the optical system to allow an operator access to the top face of the transparent plate of the sealing member for cleaning the top face of the transparent plate.
Abstract:
The present application is directed to embodiments for moving a media sheet within a scanning device. The methods include moving the media sheet through a separation mechanism that prevents multiple media sheets from being moved simultaneously along the media path. Further, a buckle is formed in the sheet at a point upstream from a scanner. The buckle acts as a buffer to absorb any load release that could occur as the media sheet exits the separation mechanism. The load release could cause a change in the velocity of the media sheet as it moves across the scanner.
Abstract:
Method and image scanning apparatus comprising an image capture unit having an illumination assembly for generating input light; a printed circuit board mounted to the image capture unit, a cooling unit generating an airflow which cools the illumination assembly of the image capture unit as well as the critical components mounted on the printed circuit board and the optical components of the image capture unit; and an adjustable baffle member moveably mounted to the frame of the image scanning apparatus for controlling the path of the airflow relative to the lamp. The cooling unit comprises at least one fan with the fan generating airflow for cooling the lamp of image capture unit. The baffle member is adjustable to control the airflow generated by the fan such that the airflow generated by the fan is redirected downward and passes the airflow under the image capture unit, thereby effectively and evenly cooling the lamp and redirecting contaminants to the end of the image scanning apparatus enclosure opposite the image capture unit.
Abstract:
An apparatus and methods of use for adjusting a sliding guide rod for an imaging device of a flatbed scanner to improve scanner skew misalignment comprising an attachment member movably mounting the sliding guide rod at one end thereof to one side of the flatbed scanner so as to allow skew-adjusting movement of the sliding guide rod at an opposite end thereof relative to the flatbed scanner and a skew adjustment assembly attached to an opposite side of the flatbed scanner and movably coupling and supporting the opposite end of the sliding guide rod to the opposite side of the flatbed scanner and being actuatable to cause the sliding guide rod to undergo skew adjustment relative to the flatbed scanner to correct scanner skew misalignment of the imaging device. The skew adjustment assembly includes a skew adjustment bracket mounted to the opposite side of the flatbed scanner and movably coupled to and supporting the opposite end of the sliding guide rod to the opposite side of the flatbed scanner and a tension spring and a plurality of bracket locking fasteners coacting with the skew adjustment bracket and movably actuatable relative thereto to move the sliding guide rod to undergo the skew adjustment relative to the flatbed scanner.
Abstract:
The present application is directed to embodiments for moving a media sheet within a scanning device. The methods include moving the media sheet through a separation mechanism that prevents multiple media sheets from being moved simultaneously along the media path. Further, a buckle is formed in the sheet at a point upstream from a scanner. The buckle acts as a buffer to absorb any load release that could occur as the media sheet exits the separation mechanism. The load release could cause a change in the velocity of the media sheet as it moves across the scanner.