摘要:
A microfluidic device includes first and second substrates bonded together. The first substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second substrate is bonded to the second opposed surface of the first substrate whereby an outlet of a channel formed in the second substrate substantially aligns with the through slot. The channel of the second substrate has an inlet that is larger than the outlet.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
A microfluidic device includes first and second glass substrates bonded together. The first glass substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second glass substrate is bonded to the second opposed surface of the first glass substrate whereby an outlet of a channel formed in the second glass substrate substantially aligns with the through slot. The channel of the second glass substrate has an inlet that is larger than the outlet.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
A method of forming a micro-display includes forming a device that includes forming a partially reflecting layer on a first substrate and forming a plate overlying the partially reflecting layer, and adhering the device to a second substrate.
摘要:
A microfluidic device includes first and second glass substrates bonded together. The first glass substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second glass substrate is bonded to the second opposed surface of the first glass substrate whereby an outlet of a channel formed in the second glass substrate substantially aligns with the through slot. The channel of the second glass substrate has an inlet that is larger than the outlet.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
A method of forming a fluid ejection device includes forming a pair of first glass layers and forming a second glass layer. Each first glass layer includes a first side and a second side with the second side defining a first fluid flow structure. The second glass layer includes a first side and a second side opposite the first side, with each respective first side and second side defining a second fluid flow structure. The second glass layer is bonded in a sandwiched position between the respective first glass layers with each respective second fluid flow structure of the second glass layer in fluid communication with the respective first fluid flow structure of the respective first glass layers to define a fluid flow pathway for ejecting a fluid.
摘要:
A microfluidic device includes first and second substrates bonded together. The first substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second substrate is bonded to the second opposed surface of the first substrate whereby an outlet of a channel formed in the second substrate substantially aligns with the through slot. The channel of the second substrate has an inlet that is larger than the outlet.
摘要:
A packaged micro-electromechanical systems (MEMS) device assembly includes a MEMS device, a substrate within which the MEMS device is disposed, and a lid disposed over the substrate. The assembly may include one or more first cavities within the lid having a predetermined volume satisfying packaging specifications for the packaged MEMS device assembly. The assembly may include one or more second cavities within the lid and one or more corresponding overflow areas within the lid, where each second cavity contains a material and each corresponding overflow area is adapted to catch overflow of the material. The assembly may include one or more third cavities within the lid and one or more channels within one of the substrate and the lid to fluidically connect the MEMS device to the third cavities.