摘要:
A method for controlling the algorithmic elements in 3D graphics systems via an improved 3D graphics API is provided. In one aspect, the invention unifies separately provided 2D and 3D graphics APIs into a single graphics interface, thereby eliminating redundancy of functionality and unnecessary data types. As a result, a single mapping to various graphics objects replaces redundant mappings. A single texture download that optimizes the use of different graphics hardware is provided. A single instruction for effecting a resolution change is also provided.
摘要:
An enhanced graphics pipeline is provided that enables common core hardware to perform as different components of the graphics pipeline, programmability of primitives including lines and triangles by a component in the pipeline, and a stream output before or simultaneously with the rendering a graphical display with the data in the pipeline. The programmer does not have to optimize the code, as the common core will balance the load of functions necessary and dynamically allocate those instructions on the common core hardware. The programmer may program primitives using algorithms to simplify all vertex calculations by substituting with topology made with lines and triangles. The programmer takes the calculated output data and can read it before or while it is being rendered. Thus, a programmer has greater flexibility in programming. By using the enhanced graphics pipeline, the programmer can optimize the usage of the hardware in the pipeline, program vertex, line or triangle topologies altogether rather than each vertex alone, and read any calculated data from memory where the pipeline can output the calculated information.
摘要:
An enhanced graphics pipeline is provided that enables common core hardware to perform as different components of the graphics pipeline, programmability of primitives including lines and triangles by a component in the pipeline, and a stream output before or simultaneously with the rendering a graphical display with the data in the pipeline. The programmer does not have to optimize the code, as the common core will balance the load of functions necessary and dynamically allocate those instructions on the common core hardware. The programmer may program primitives using algorithms to simplify all vertex calculations by substituting with topology made with lines and triangles. The programmer takes the calculated output data and can read it before or while it is being rendered. Thus, a programmer has greater flexibility in programming. By using the enhanced graphics pipeline, the programmer can optimize the usage of the hardware in the pipeline, program vertex, line or triangle topologies altogether rather than each vertex alone, and read any calculated data from memory where the pipeline can output the calculated information.
摘要:
An enhanced graphics pipeline is provided that enables common core hardware to perform as different components of the graphics pipeline, programmability of primitives including lines and triangles by a component in the pipeline, and a stream output before or simultaneously with the rendering a graphical display with the data in the pipeline. The programmer does not have to optimize the code, as the common core will balance the load of functions necessary and dynamically allocate those instructions on the common core hardware. The programmer may program primitives using algorithms to simplify all vertex calculations by substituting with topology made with lines and triangles. The programmer takes the calculated output data and can read it before or while it is being rendered. Thus, a programmer has greater flexibility in programming. By using the enhanced graphics pipeline, the programmer can optimize the usage of the hardware in the pipeline, program vertex, line or triangle topologies altogether rather than each vertex alone, and read any calculated data from memory where the pipeline can output the calculated information.
摘要:
An enhanced graphics pipeline is provided that enables common core hardware to perform as different components of the graphics pipeline, programmability of primitives including lines and triangles by a component in the pipeline, and a stream output before or simultaneously with the rendering a graphical display with the data in the pipeline. The programmer does not have to optimize the code, as the common core will balance the load of functions necessary and dynamically allocate those instructions on the common core hardware. The programmer may program primitives using algorithms to simplify all vertex calculations by substituting with topology made with lines and triangles. The programmer takes the calculated output data and can read it before or while it is being rendered. Thus, a programmer has greater flexibility in programming. By using the enhanced graphics pipeline, the programmer can optimize the usage of the hardware in the pipeline, program vertex, line or triangle topologies altogether rather than each vertex alone, and read any calculated data from memory where the pipeline can output the calculated information.
摘要:
An API is provided that enables programmability of a 3D chip, wherein programming or algorithmic elements written by the developer can be downloaded to the chip, thereby programming the chip to perform those algorithms. A developer writes a routine that is downloadable to a 3D graphics chip. There are also a set of algorithmic elements that are provided in connection with the API that have already been programmed for the developer, that are downloadable to the programmable chip for improved performance. Thus, a developer may download preexisting API objects to a 3D graphics chip. A developer adheres to a specific format for packing up an algorithmic element, or set of instructions, for implementation by a 3D graphics chip. The developer packs the instruction set into an array of numbers, by referring to a list of ‘tokens’ understood by the 3D graphics chip. This array of numbers in turn is mapped correctly to the 3D graphics chip for implementation of the algorithmic element by the 3D graphics chip.
摘要:
Systems and methods for downloading algorithmic elements to a coprocessor and corresponding processing and communication techniques are provided. For an improved graphics pipeline, the invention provides a class of co-processing device, such as a graphics processor unit (GPU), providing improved capabilities for an abstract or virtual machine for performing graphics calculations and rendering. The invention allows for runtime-predicated flow control of programs downloaded to coprocessors, enables coprocessors to include indexable arrays of on-chip storage elements that are readable and writable during execution of programs, provides native support for textures and texture maps and corresponding operations in a vertex shader, provides frequency division of vertex streams input to a vertex shader with optional support for a stream modulo value, provides a register storage element on a pixel shader and associated interfaces for storage associated with representing the “face” of a pixel, provides vertex shaders and pixel shaders with more on-chip register storage and the ability to receive larger programs than any existing vertex or pixel shaders and provides 32 bit float number support in both vertex and pixel shaders.
摘要:
An API is provided that enables programmability of a 3D chip, wherein programming or algorithmic elements written by the developer can be downloaded to the chip, thereby programming the chip to perform those algorithms. A developer writes a routine that is downloadable to a 3D graphics chip. There are also a set of algorithmic elements that are provided in connection with the API that have already been programmed for the developer, that are downloadable to the programmable chip for improved performance. Thus, a developer may download preexisting API objects to a 3D graphics chip. A developer adheres to a specific format for packing up an algorithmic element, or set of instructions, for implementation by a 3D graphics chip. The developer packs the instruction set into an array of numbers, by referring to a list of ‘tokens’ understood by the 3D graphics chip. This array of numbers in turn is mapped correctly to the 3D graphics chip for implementation of the algorithmic element by the 3D graphics chip.
摘要:
Systems and methods are provided for controlling texture sampling in connection with computer graphics in a computer system. In various embodiments, improved mechanisms for controlling texture sampling are provided that enable 3-D accelerator hardware to greatly increase the level of realism in rendering, including improved mechanisms for (1) motion blur; (2) generating anisotropic surface reflections (3) generating surface self-shadowing (4) ray-cast volumetric sampling (4) self-shadowed volumetric rendering and (5) self-shadowed volumetric ray-casting. In supplementing existing texture sampling techniques, parameters for texture sampling may be replaced and/or modified.
摘要:
A three-dimensional API for communicating with hardware implementations of vertex shaders and pixel shaders having local registers. With respect to vertex shaders, API communications are provided that may make use of an on-chip register index and API communications are also provided for a specialized function, implemented on-chip at a register level, that outputs the fractional portion(s) of input(s). With respect to pixel shaders, API communications are provided for a specialized function, implemented on-chip at a register level, that performs a linear interpolation function and API communications are provided for specialized modifiers, also implemented on-chip at a register level, that perform modification functions including negating, complementing, remapping, stick biasing, scaling and saturating. Advantageously, these API communications expose these very useful on-chip graphical algorithmic elements to a developer while hiding the details of the operation of the vertex shader and pixel shader chips from the developer.