摘要:
An Optical Projecting Encoder (“OPE”) having an emitter module for transmitting emitted optical radiation through a mask to a moving object, and a detector module for receiving reflected optical radiation from the moving object. The reflected optical radiation from the moving object may include a predetermined image cast by the mask and a surface texture image from the moving object. The OPE may include a transmissive layer covering both the emitter module and the detector module, where the transmissive layer covering the emitter module collimates the optical radiation from the emitter module, and the transmissive layer covering the detector module concentrates the optical radiation reflected from the moving object to the detector module. The detector module may include an optical navigation sensor that continuously acquires and compares predetermined images cast by the mask and surface texture images from the moving object.
摘要:
An optical finger navigation (OFN) device for use in handheld portable devices is presented. The OFN device may include a light source, a sensor, a lens holder integrated with a light guide system and a molded lead frame. The lens holder may include a lens receiving region for receiving the lens, a light guide system for directing light emitted by the light source towards the navigation surface. The light guide system may include a slanted wall that may be coated with a light reflective material.
摘要:
An optical finger navigation (OFN) device for use in handheld portable devices is presented. The OFN device may include a light source, a sensor, a lens holder integrated with a light guide system and a molded lead frame. The lens holder may include a lens receiving region for receiving the lens, a light guide system for directing light emitted by the light source towards the navigation surface. The light guide system may include a slanted wall that may be coated with a light reflective material.
摘要:
An optical navigation system and method of estimating motion uses a plate with an aperture, a photodetector and an optical system for optical lift detection. The optical system is configured to direct an input light to a target surface through the aperture of the plate and to direct the input light reflected from the target surface and transmitted back through the aperture of the plate toward the photodetector to be detected by the photodetector for lift detection.
摘要:
An optical navigation system and method of estimating motion uses a plate with an aperture, a photodetector and an optical system for optical lift detection. The optical system is configured to direct an input light to a target surface through the aperture of the plate and to direct the input light reflected from the target surface and transmitted back through the aperture of the plate toward the photodetector to be detected by the photodetector for lift detection.
摘要:
A user input device to generate an optical navigation signal based on an edge-lit pattern. The user input device includes an optical element, a light source, a sensor array, and a navigation engine. The optical element includes a finger interface surface. At least a portion of the optical element exhibits total internal reflection (TIR). The light source provides light to the finger interface surface. The sensor array detects light reflected from the finger interface surface in response to contact between a finger and the finger interface surface. The contact between the finger and the finger interface surface disrupts the TIR and causes light to be reflected out of the optical element towards the sensor array. The navigation engine generates lateral movement information, which is indicative of lateral movement of the finger relative to the sensor array, in response to the detected light.
摘要:
A self-calibrating optical feedback system for an optical navigation device. The self-calibrating optical feedback system includes a light source, an illumination lens, a beam splitter, and an optical feedback device. The illumination lens is coupled relative to the light source. The light source emits light based on a programming current. The illumination lens directs the light towards a beam splitter. The beam splitter partially reflects the light directed from the illumination lens. The optical feedback device detects the partially reflected light from the beam splitter and generates a feedback signal to modify an intensity of the light emitted by the light source. Embodiments of the self-calibrating optical feedback system maintain the output intensity of a laser driven optical navigation device below an eye-safety level.
摘要:
An optical sensor assembly is disclosed. The optical sensor assembly includes a folded optical system that utilizes one or more non-planar reflective surfaces that enable the manipulation or conditioning of the overall thickness of the sensor assembly, the field of view of the sensor assembly, and the image size, either independently or in combination.
摘要:
A computer keyboard integrated with an optical input device is provided. The computer keyboard includes a plurality of keys, a plurality of optical input devices, a controller, and a navigation engine configured to generate an input function in response to finger movement on one or more of the plurality of input devices. The computer keyboard controller is configured to permit the user to assign an input function to one or more of the plurality of optical input devices from a list of input functions. The plurality of optical input devices have firmware capable of stitching two input devices together to provide a combined input function.
摘要:
A system of a tactile switch and an optical navigation device. The system includes a user device. The user device includes an optical finger navigation device. The optical finger navigation device enables a user to control a function of the user device via the optical finger navigation device. The optical finger navigation device includes a circuit board, a sensor array electrically coupled to the circuit board, and a tactile switch electrically coupled to the circuit board. The sensor array detects light and generates a navigation signal that corresponds to the detected light. The tactile switch is physically aligned with the sensor array on the circuit board. The tactile switch generates a switch signal upon actuation of the tactile switch in response to a force on a packaging structure of the sensor array.