摘要:
A first potential hot trace of a program is determined. A second potential hot trace of the program is determined. A common path from the first potential hot trace and the second potential hot trace is selected as the selected hot trace of the program.
摘要:
A first potential hot trace of a program is determined. A second potential hot trace of the program is determined. A common path from the first potential hot trace and the second potential hot trace is selected as the selected hot trace of the program.
摘要:
A method and apparatus for dynamic binary translator to support precise exceptions with minimal optimization constraints. In one embodiment, the method includes the translation of a source binary application generated for a source instruction set architecture (ISA) into a sequential, intermediate representation (IR) of the source binary application. In one embodiment, the sequential IR is modified to incorporate exception recovery information for each of the exception instructions identified from the source binary application to enable a dynamic binary translator (DBT) to represent exception recovery values as regular values used by IR instructions. In one embodiment, the sequential IR may be optimized with a constraint on movement of an exception instruction downward past an irreversible instruction to form a non-sequential IR. In one embodiment, the non-sequential IR is optimized to form a translated binary application for a target ISA. Other embodiments are described and claimed.
摘要:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
摘要:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
摘要:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
摘要:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
摘要:
An apparatus and method is described herein for conditionally committing /andor speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
摘要:
Methods and an apparatus to form a resilient objective instruction construct are provided. An example method obtains a source instruction construct and forms a resilient objective instruction construct by compiling one or more resilient transactions.
摘要:
In one embodiment, the present invention includes a method for instrumenting a code block with code to perform dynamic information flow tracking. Then during execution, it may be determined whether a pattern of input data to the code block has been previously received by the code block. If so, the code block may be executed, otherwise the instrumented code block may be executed. Other embodiments are described and claimed.