Abstract:
A method and means for detection of oxidizing contamination in acid etching baths employed to etch silicon oxide layers from silicon substrates employed in silicon integrated circuit microelectronics fabrications. There is provided a silicon substrate having within a doped region formed employing ion implantation. The silicon substrate is immersed within a buffered oxide etch (BOE) acid bath, wherein the presence of an oxidizing contaminant correlates with an increase in the resistance of the doped region upon the removal of any silicon oxide layer on the silicon surface.
Abstract:
Measurement of contaminating nitrogen during silicon ion implantation has been achieved by including a silicon wafer as a monitor in the implantation chamber. After silicon ion implantation, the monitor is subjected to a rapid thermal oxidation (about 1,100.degree. C. for one minute) and the thickness of the resulting grown oxide layer is measured. The thinner the oxide layer (relative to an oxide layer grown on pure silicon) the greater the degree of nitrogen contamination. For example, a reduction in oxide thickness of about 30 Angstroms corresponds to a nitrogen dosage of about 10.sup.13 atoms/sq. cm. By measuring total ion dosage during implantation and then subtracting the measured nitrogen dosage, the corrected silicon dosage may also be computed.
Abstract:
Contamination due to deposited particulate matter has been greatly reduced in single wafer sputter-etchers by coating the full interior of the sputtering shield with a layer of an arc-sprayed material such as aluminum, said layer being possessed of a high degree of surface roughness. The method for forming the coating of arc-sprayed aluminum is described and data comparing particulate contaminant count and product yield before and after the adoption of the present invention, are presented.
Abstract:
The uniformity of material removal, as well as contamination due to deposited particulate matter, has been reduced in single wafer sputter-etchers by providing an improved gas baffle. Said gas baffle presents a smooth surface to the incoming sputtering gas so that it disperses uniformly throughout the sputtering chamber, thereby avoiding local fluctuations in pressure which, in turn, can lead to local differences in material removal rate as well as to particulate contamination of the surface that is being etched. The design of the baffle is described along with a method for attaching it to the inside of the sputtering shield.
Abstract:
The uniformity of material removal, as well as contamination due to deposited particulate matter, has been reduced in single wafer sputter-etchers by providing an improved gas baffle. Said gas baffle presents a smooth surface to the incoming sputtering gas so that it disperses uniformly throughout the sputtering chamber, thereby avoiding local fluctuations in pressure which, in turn, can lead to local differences in material removal rate as well as to particulate contamination of the surface that is being etched. The design of the baffle is described along with a method for attaching it to the inside of the sputtering shield.
Abstract:
The uniformity of material removal, as well as contamination due to deposited particulate matter, has been reduced in single wafer sputter-etchers by providing an improved gas baffle. Said gas baffle presents a smooth surface to the incoming sputtering gas so that it disperses uniformly throughout the sputtering chamber, thereby avoiding local fluctuations in pressure which, in turn, can lead to local differences in material removal rate as well as to particulate contamination of the surface that is being etched. The design of the baffle is described along with a method for attaching it to the inside of the sputtering shield.