摘要:
Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
摘要:
Embodiments of process shield for use in process chambers are provided herein. In some embodiments, a process shield for use in a process chamber includes: an annular body having an upper portion and a lower portion extending downward and radially inward from the upper portion, wherein the upper portion includes a plurality of annular trenches on an upper surface thereof and having a plurality of slots disposed therebetween to fluidly couple the plurality of annular trenches, wherein one or more inlets extend from an outer surface of the annular body to an outermost trench of the plurality of annular trenches.
摘要:
Embodiments of the present disclosure provide a substrate processing system. In one embodiment, the system includes a chamber, a target disposed within the chamber, a magnetron disposed proximate the target, a pedestal disposed within the chamber, and a first gas injector disposed at a sidewall of the chamber. The first gas injector includes a first gas channel extending through a body of the first gas injector, the first gas channel has a first gas outlet. The first gas injector also includes a second gas channel extending through the body of the first gas injector, wherein the second gas channel has a second gas outlet. The second gas channel includes a first portion, and a second portion branching off from an end of the first portion, wherein the second portion is disposed at an angle with respect to the first portion, and the first gas injector is operable to rotate about a longitudinal center axis of the body of the first gas injector.
摘要:
A film deposition apparatus, comprising: a deposition preventive plate which is located in a processing chamber performing film deposition processing on a substrate so as to surround a processing region in the processing chamber for processing on the substrate, and which prevents a film deposition material from being attached to an inner wall of the processing chamber, wherein the deposition preventive plate is configured by arranging a plurality of component plates of which respective end portions are overlapped with each other at a gap, such that a thermal expansion generated due to the film deposition processing is absorbed by a relative movement of an overlapped part in two adjacent component plates of the plurality of component plates in a width direction of the overlapped part, and a concave part is provided at the overlapped part to make the gap provided in a side communicating with the processing region be larger than that provided in the other side, thin parts provided in the respective end portions of the two adjacent component plates are overlapped with each other, and a surface facing the processing region in the overlapped part and a surface facing the processing region in non-overlapped part are on the same plane, and a surface facing the inner wall in the overlapped part and a surface facing the inner wall in non-overlapped part are on the same plane.
摘要:
A plasma sputtering apparatus according to one embodiment includes a chamber and a reservoir in fluidic communication with the chamber. The reservoir stores a vapor source therein, and is configured to release vapor at a predetermined rate. The vapor released by the reservoir is effective to diminish an etch rate of a first magnetic material, the vapor having a smaller effect on an etch rate of a second magnetic material that is different than the first magnetic material. The apparatus also includes a mount for a substrate and a plasma source.
摘要:
A circular PVD chamber has a plurality of sputtering targets mounted on a top wall of the chamber. A pallet in the chamber is coupled to a motor for rotating the pallet about its center axis. The pallet has a diameter less than the diameter of the circular chamber. The pallet is also shiftable in an XY direction to move the center of the pallet beneath any of the targets so all areas of a workpiece supported by the pallet can be positioned directly below any one of the targets. A scanning magnet is in back of each target and is moved, via a programmed controller, to only be above portions of the workpiece so that no sputtered material is wasted. For depositing a material onto small workpieces, a cooling backside gas volume is created between the pallet and the underside of sticky tape supporting the workpieces.
摘要:
A physical vapor deposition (PVD) chamber, a process kit of a PVD chamber and a method of fabricating a process kit of a PVD chamber are provided. In various embodiments, the PVD chamber includes a sputtering target, a power supply, a process kit, and a substrate support. The sputtering target has a sputtering surface that is in contact with a process region. The power supply is electrically connected to the sputtering target. The process kit has an inner surface at least partially enclosing the process region, and a liner layer disposed on the inner surface. The substrate support has a substrate receiving surface, wherein the liner layer disposed on the inner surface of the process kit has a surface roughness (Rz), and the surface roughness (Rz) is substantially in a range of 50-200 μm.
摘要:
A magnetron sputtering coating device includes a deposition chamber, sputtering cathodes, a rotating stand within the deposition chamber, a support platform on the rotating stand, a first rotation system for driving the rotating stand to rotate around a central axis of the rotating stand, and a baffle fixed on the rotating stand. The sputtering cathodes are arranged around and perpendicular to the rotating stand.
摘要:
Embodiments of process kit shields and physical vapor deposition (PVD) chambers incorporating same are provided herein. In some embodiments, a process kit shield for use in depositing a first material in a physical vapor deposition process may include an annular body defining an opening surrounded by the body, wherein the annular body is fabricated from the first material, and an etch stop coating formed on opening-facing surfaces of the annular body, the etch stop coating is fabricated from a second material that is different from the first material, the second material having a high etch selectivity with respect to the first material.
摘要:
A cover for a configurable measuring system of a configurable sputtering system which is adapted for sputtering multilayer coatings with varying compositions and comprising a plurality of sputtering zones and having a plurality of apertures on which the cover is detachably attachable, and wherein the cover comprises a sensor system for in situ detection of a property of the multilayer coating on a substrate, wherein said at least one sensor system is attached to the cover.