摘要:
The present invention discloses a backlight control circuit capable of distinguishing an under current condition, comprising: at least one light emission device path having a voltage node; at least one current source for controlling the current amount on the light emission device path; and at least one under current detection circuit for generating a first control signal according to the voltage at the voltage node, wherein when the first control signal changes its state, the under current detection circuit generates a second control signal to change the voltage on the voltage node if the light emission device path is normally connected.
摘要:
The present invention discloses a backlight control circuit capable of distinguishing an under current condition, comprising: at least one light emission device path having a voltage node; at least one current source for controlling the current amount on the light emission device path; and at least one under current detection circuit for generating a first control signal according to the voltage at the voltage node, wherein when the first control signal changes its state, the under current detection circuit generates a second control signal to change the voltage on the voltage node if the light emission device path is normally connected.
摘要:
The present invention discloses a tail-less LED control circuit, which includes: a power supply stage having an output terminal which provides electrical power to an LED circuit; an output capacitor coupled to the output terminal; an LED driver circuit coupled to the power supply stage for controlling the power supply stage to provide the electrical power to the LED circuit, the LED driver circuit receiving a PWM dimming signal for adjusting brightness of the LED circuit; and a MOSFET switch coupled to the output capacitor in series, the MOSFET switch switching synchronously with the PWM dimming signal to alleviate LED afterglow, wherein the MOSFET switch includes a body diode having an anode-cathode direction against the discharge direction of the output capacitor.
摘要:
The present invention discloses a tail-less LED control circuit, which includes: a power supply stage having an output terminal which provides electrical power to an LED circuit; an output capacitor coupled to the output terminal; an LED driver circuit coupled to the power supply stage for controlling the power supply stage to provide the electrical power to the LED circuit, the LED driver circuit receiving a PWM dimming signal for adjusting brightness of the LED circuit; and a MOSFET switch coupled to the output capacitor in series, the MOSFET switch switching synchronously with the PWM dimming signal to alleviate LED afterglow, wherein the MOSFET switch includes a body diode having an anode-cathode direction against the discharge direction of the output capacitor.
摘要:
The present invention discloses a backlight control circuit, and a method for controlling light emission devices. The method comprises: providing a plurality of light emission device paths connected in parallel; and setting a total current of the paths connected in parallel to a constant.
摘要:
The present invention discloses a backlight control circuit, comprising: a voltage supply circuit for receiving an input voltage and generating an output voltage under control by a control signal; at least one voltage comparison path respectively coupled to at least one light emission device path; a voltage operative amplifier circuit for generating the control signal according to a lowest voltage on the at least one voltage comparison path; and at least one under current detection circuit for detecting whether a corresponding one of the at least one light emission device path is in an under current status, whereby when anyone of the under current detection circuits detects the under current status, it sends an exclusion signal excluding a corresponding one of the at least one voltage comparison path from being an effective input of the voltage operative amplifier.
摘要:
The present invention discloses a backlight control circuit, and a method for controlling light emission devices. The method comprises: providing a plurality of light emission device paths connected in parallel; and setting a total current of the paths connected in parallel to a constant.
摘要:
The present invention discloses a backlight control circuit with flexible configuration, comprising: a light emitting device path; a current source for controlling the current amount on the light emitting device path, the current source receiving a relatively high reference voltage in a first state, and receiving a relatively low reference voltage in a second state; and a current source control circuit for controlling the current source, whereby when the light emitting device path is in normal use, the current source is set to the first state, and when the light emitting device path is not in normal use, the current source is set to the second state.
摘要:
The present invention discloses a current splitter circuit for splitting a supply current to multiple light emitting device strings of a light emitting device array. The current splitter circuit includes: a minimum selector circuit coupled to the multiple light emitting device strings to generate a minimum signal which indicates a minimum voltage of the light emitting device strings; and multiple current source circuits each including a first current source end coupled to a corresponding light emitting device string, a second current source end coupled to ground, and a current source control end receiving a current control signal related to the minimum signal, so as to control currents through the corresponding light emitting device string.
摘要:
The present invention discloses a backlight control circuit with flexible configuration, comprising: a light emitting device path; a current source for controlling the current amount on the light emitting device path, the current source receiving a relatively high reference voltage in a first state, and receiving a relatively low reference voltage in a second state; and a current source control circuit for controlling the current source, whereby when the light emitting device path is in normal use, the current source is set to the first state, and when the light emitting device path is not in normal use, the current source is set to the second state.