Abstract:
A method of state maintenance for a MMC system. The method includes using a plurality of signals, including a working voltage signal, a low voltage detection (LVD) signal, an LVD interrupt signal, a firmware polling signal, an LVD interrupt reset signal. The LVD signal responds to a voltage level of the working voltage at a preset voltage level. The LVD interrupt signal responds to the level of the LVD signal. After the LVD signal returns to the high level state and the firmware polling signal does the polling action to the LVD interrupt signal, then the LVD interrupt reset signal is issued to reset the LVD interrupt signal.
Abstract:
The present invention discloses a plug-and-play audio device which can electrically connect to a computer communication interface of a computer device. The plug-and-play audio device comprises a communication interface control unit, a isochronous transfer node unit, an audio control unit, a micro-control unit, a bulk data transfer node unit, a bidirectional data transfer interface unit, a data reading unit, and a data storage unit. The isochronous transfer node unit electrically connects to the communication interface control unit and the audio control unit. The bidirectional data transfer interface unit electrically connects to the micro-control unit and the bulk data transfer node unit, and further comprises a transmission interface to connect an external device. The data reading unit electrically connects to the bulk data transfer node unit. The data storage unit comprises storage modules, driver storage modules and audio device drivers.
Abstract:
A method of state maintenance for a MMC system. The method includes using a plurality of signals, including a working voltage signal, a low voltage detection (LVD) signal, an LVD interrupt signal, a firmware polling signal, an LVD interrupt reset signal. The LVD signal responds to a voltage level of the working voltage at a preset voltage level. The LVD interrupt signal responds to the level of the LVD signal. After the LVD signal returns to the high level state and the firmware polling signal does the polling action to the LVD interrupt signal, then the LVD interrupt reset signal is issued to reset the LVD interrupt signal.
Abstract:
A method of state maintenance for a flash storage card system. The method includes using a plurality of signals, including a working voltage signal, a low voltage detection (LVD) signal, an LVD interrupt signal, a firmware polling signal, an LVD interrupt reset signal. The LVD signal responds to a voltage level of the working voltage at a preset voltage level. The LVD interrupt signal responds to the level of the LVD signal. After the LVD signal returns to the high level state and the firmware polling signal does the polling action to the LVD interrupt signal, then the LVD interrupt reset signal is issued to reset the LVD interrupt signal.
Abstract:
A method of state maintenance for a flash storage card system. The method includes using a plurality of signals, including a working voltage signal, a low voltage detection (LVD) signal, an LVD interrupt signal, a firmware polling signal, an LVD interrupt reset signal. The LVD signal responds to a voltage level of the working voltage at a preset voltage level. The LVD interrupt signal responds to the level of the LVD signal. After the LVD signal returns to the high level state and the firmware polling signal does the polling action to the LVD interrupt signal, then the LVD interrupt reset signal is issued to reset the LVD interrupt signal.