摘要:
A computer-implemented method for adjusting light intensity of light sources of an image measuring machine in measurement of a surface image of an object includes obtaining the surface image of the object, setting one light source to be adjusted and adjusting a light intensity of the light source according to an adjusting mode. The method further includes computing an optimum light intensity level, adjusting a light intensity to the optimum light intensity level to obtain an optimum surface image of the object, and storing the optimum surface image and the optimum light intensity level into a storage system.
摘要:
A computer-implemented method for adjusting light intensity of light sources of an image measuring machine in measurement of a surface image of an object includes obtaining the surface image of the object, setting one light source to be adjusted and adjusting a light intensity of the light source according to an adjusting mode. The method further includes computing an optimum light intensity level, adjusting a light intensity to the optimum light intensity level to obtain an optimum surface image of the object, and storing the optimum surface image and the optimum light intensity level into a storage system.
摘要:
A computer-implemented method for positioning a coordinate system in relation to a workpiece receives positioning elements including feature elements selected from the workpiece. A normal vector of a first axis, an origin, a normal vector of a second axis are determined according to the positioning elements. A positioned coordinate system is generated according to the normal vectors of the first axis and the second axis, and the origin, for positioning the coordinate system.
摘要:
A computer-implemented method for scanning and obtaining points of an object is provided. The method includes defining a measuring distance between two points of an object and scanning the measuring distance according to an optimal measuring position. If coordinate values of each of the scanned points are valid, then the method send the obtained coordinate values to an electronic device if the obtained coordinate values are valid.
摘要:
In an electronic device, an image point A on an image of an object is selected. A spectral confocal sensor is controlled to move to a position above a measuring point A′ on the object, where the measuring point A′ corresponds to the image point A, and a Z-coordinate of the measuring point A′ is computed using the spectral confocal sensor. A focal position of the measuring point A′ is computed according to the Z-coordinate of the measuring point A′, and a CCD lens is controlled to move to the focal position. The Z-coordinate of the measuring point A′ is stored into a storage unit of the electronic device.
摘要:
A system and method for determining inflection points in an image of an object includes obtaining the image of the object, performing binary image processing on a border of the image to obtain border points, selecting a predetermined number of the border points to fit a straight line, calculating a vertical distance between each selected border point and the straight line, and obtaining a total distance. The method further includes adding a new border point to the selected border points if the total distance is less than a predetermined value, so as to fit a new straight line and do a loop cycle, otherwise, regarding a last border point of the selected border points as an inflection point, and sequentially selecting the predetermined number of other border points to fit another new straight line.
摘要:
A scanner obtains point-cloud data of adjoining parts of a product. A computing device reads two point-clouds from the point-cloud data, fits two or more lines according to the two point-clouds, selects two lines that have the same ascending direction from the two or more lines, and creates a two-dimensional coordinates system base on the two selected lines. The computing device determines a highest point in each of the two point-clouds based on distances from each point in either of the point-clouds to a corresponding selected line, and determines two nearest points in the two point-clouds. A difference between Y coordinates of the two highest points is determined as a gap-height of two adjoining parts of the product, and a difference between X coordinates of the two nearest points is determined as a gap-width between two adjoining parts.
摘要:
In a method of a computing device for calibrating light channels, one or more channel options of an illumination selecting unit of the computing device are selected to turn on the one or more light channels of a light source device. A camera unit captures a first image of the light source device. A zone and a serial number of each light channel are marked on the first image. Each channel option of the illumination selecting unit is eliminated. The camera unit captures a second image of the light source device when a light channel is turned off. The first image and the second image are compared, and a correlation between the light channel that is turned off and the eliminated channel option is determined. The serial numbers of the channel options are modified and remapped according to correlations between each light channel and each channel option.
摘要:
In a method for scanning edges of an object using a computing device, the computing device is connected to an image measuring machine including an image capturing device. A start point, an end point, a scan direction, and a scan distance interval are set. Scan points on the edges of the object are determined. For each scan point, the computing device aims the image capturing device at the scan point, controls the image capturing device to capture images of the object at different depths, and records focal points. Definition values of the images are calculated and an image with a highest definition value is determined. A focal point corresponds to the image with the highest definition value and so coordinates of the scan point are determined. Scanned edges of the object are formed based on all the scan points.
摘要:
A method controls probe measurement using an electronic device. The method receives user-defined identification data of a probe if a preset configuration file is not stored in a storage device of the electronic device, and fits a three dimensional (3D) model of the probe according to the user-defined identification data of the probe. The method further updates the user-defined identification data of the probe if the fitted 3D model does not match the probe, or stores the user-defined identification data of the probe in a user-defined configuration file if the fitted 3D model matches the probe, and controls the probe to execute measurement according to the user-defined configuration file.