Abstract:
An active-hydrogen-containing (carboxyl or hydroxyl) phosphorus compound is provided. An epoxy resin semi-thermoset formed by bonding the phosphorus compound to an epoxy group is also provided. A flame-retardant epoxy resin thermoset is formed after reacting the epoxy resin semi-thermoset with a curing agent. The epoxy resin thermoset possesses excellent flame retardancy, heat stability, and high glass transition temperature (Tg), does not produce toxic and corrosive fumes during combustion, and thus is an environmentally friendly flame-retardant material.
Abstract:
An active-hydrogen-containing (carboxyl or hydroxyl) phosphorus compound is provided. An epoxy resin semi-thermoset formed by bonding the phosphorus compound to an epoxy group is also provided. A flame-retardant epoxy resin thermoset is formed after reacting the epoxy resin semi-thermoset with a curing agent. The epoxy resin thermoset possesses excellent flame retardancy, heat stability, and high glass transition temperature (Tg), does not produce toxic and corrosive fumes during combustion, and thus is an environmentally friendly flame-retardant material.
Abstract:
Phosphorus-containing benzoxazine-based bisphenols and derivatives thereof are disclosed. The phosphorus-containing benzoxazine-based bisphenols are prepared by reacting DOPO with benzoxazine to form the phosphorus-containing benzoxazine-based bisphenols. The phosphorus-containing benzoxazine-based bisphenols can further to form advanced epoxy resins. The advanced epoxy resins can further be cured to form flame retardant epoxy thermosets.
Abstract:
The Phosphorus-containing bisphenols and preparing method thereof are disclosed. A method for producing the phosphorus-containing bisphenol of the formula (1) includes reacting compounds respectively defined by a formula (a), (b), (c) and an acid catalyst to yield compounds of phosphorus-containing bisphenol.
Abstract:
The invention discloses a novel cross-linked epoxy resin with flame-retardant properties and method for producing the same. The polymeric material of the invention includes an epoxy resin, a curing agent and a modification agent. Particularly, the modification agent is a derivative of 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-Oxide (DOPO). Moreover, the curing agent is 4,4′-diaminodiphenyl methane (DDM), or tris(4-aminephenyl)amine (NNH).
Abstract:
The present invention provides phosphorus-based oxazine compounds and the preparation method thereof. The phosphorus-based oxazine compounds of the present invention can provide better fire-resistant characteristics, while the preparation method for the phosphorus-based oxazine compound of the present invention can offer high yields and/or high purity phosphorus-based oxazine compounds.
Abstract:
A series of curing agents are provided. The curing agents are multi-functional and phosphorus-containing. The curing agents have excellent processability to be used as an epoxy resin curing agent. The curing agents can be cured to obtain a phosphorus-containing epoxy thermoset with flame retardancy characteristic. The epoxy thermosets are very fit for circuit board substrate having high glass transition temperature; semiconductor packaging material; and related materials.
Abstract:
A series of novel phosphorus-containing compounds having the following formula is provided: in which: R1-R4, A, Q and m are as defined in the specification. A process for the preparation of the compound of formula (I) is also provided. A polymer of formula (PA), and preparation process and use thereof are further provided. A polymer of formula (PI), and preparation process and use thereof are also provided.
Abstract:
The Phosphorus-containing bisphenols and preparing method thereof are disclosed. A method for producing the phosphorus-containing bisphenol of the formula (1) includes reacting compounds respectively defined by a formula (a), (b), (c) and an acid catalyst to yield compounds of phosphorus-containing bisphenol.
Abstract:
Disclosed is a method for making a low-k, flame-retardant, bi-functional benzoxazine. The method includes the steps of dissolving phosphoric diamine with various functional groups, phenolic adamantane and paraformaldehyde in a solvent at 72° C. to 88° C. for 7 to 9 hours, and cooling and introducing the solution in n-hexane to separate the low-k, flame-retardant, phosphoric, bi-functional benzoxazine.