Abstract:
A digital video (DV) storage system comprises an interface module receiving an incoming signal and converting the incoming signal into an incoming bit-stream; a DV demuxer directly connected to the interface module for receiving the incoming bit-stream, wherein the DV demuxer de-multiplexes received blocks in the incoming bit-stream into at least video blocks being in video sections and audio blocks being in audio sections; and memory coupled to the DV demuxer for storing the video blocks and audio blocks. By directly connecting the interface module to the DV demuxer, and by not buffering the incoming bit-stream outside the interface module and the DV demuxer, the memory bandwidth requirement of the memory is greatly reduced, and the interface module and the DV demuxer can be easily implemented together in a single IC.
Abstract:
Methods and systems for multi-stage DV encoding and decoding. A skip command may be issued by a microprocessor or DRAM controller via a physical link when DRAM bandwidth is overtaxed. Corresponding encoding and decoding systems implementing the proposed DV encoding or decoding method are also provided.
Abstract:
Methods and systems for multi-stage DV encoding and decoding. A skip command may be issued by a microprocessor or DRAM controller via a physical link when DRAM bandwidth is overtaxed. Corresponding encoding and decoding systems implementing the proposed DV encoding or decoding method are also provided.
Abstract:
The present invention is a bits stream control system for digital data. The bits stream control system comprises an encoder, a bits stream truncator, and a buffer. The encoder is used for encoding the digital data into a plurality of bits streams. The bits stream truncator is used for truncating or not truncating each of the bits streams to generate a plurality of corresponding modified bits streams according to a predetermined bit budget policy. The buffer is used for storing the modified bits streams.