摘要:
An organic light-emitting device (1) including, arranged in the following order: an anode (10), an emitting layer (40), a donor-containing layer (50), an acceptor-containing layer (60) and a cathode (70), the donor-containing layer (50) containing at least one selected from a donor metal, a donor metal compound and a donor metal complex.
摘要:
An organic EL device which has a long lifetime and requires only a low voltage is provided. The organic electro luminescent device including: an emitting layer (40) between an anode (10) and a cathode (60), an acceptor-containing layer (70) which contains an acceptor and is electron-transportable, and a hole-transporting layer (30), the acceptor-containing layer and the hole-transporting layer being disposed between the anode (10) and the emitting layer (40) in this order from the anode.
摘要:
An organic electroluminescence device (1) including: an anode (20) and a cathode (50), at least two organic emitting layers (30), (32) and (34) interposed between the anode and the cathode, and at least one intermediate connection layer (40) and (42) being provided between the organic emitting layers (30), (32) and (34), the intermediate connection layer (40) and (42) comprising an acceptor layer, a donor layer and an electron-transporting material layer being stacked in this order from the cathode (50), the electron-transporting material layer containing a non-complex compound with a nitrogen-containing heterocyclic structure.
摘要:
An organic electroluminescent device including in sequence an anode, a first emitting layer (5), a carrier barrier layer (6), a second emitting layer (7) and a cathode stacked; wherein the ionization potential of the carrier barrier layer (6) is more than the ionization potential of the first emitting layer (5) by 0.1 eV or more and the affinity level of the carrier barrier layer (6) is less than the affinity levels of the first emitting layer (5) and the second emitting layer (7) by 0.1 eV or more.
摘要:
An organic electroluminescence device including opposite anode and cathode, and a hole-transporting region, an emitting layer and an electron-transporting region in sequential order from the anode between the anode and the cathode, wherein the emitting layer includes a red emitting portion, a green emitting portion, and a blue emitting portion; the blue emitting portion includes a host BH and a fluorescent dopant FBD; the triplet energy ETfbd of the fluorescent dopant FBD is larger than the triplet energy ETbh of the host BH; the green emitting portion includes a host GH and a phosphorescent dopant PGD; the electron-transporting region includes a common electron-transporting layer adjacent to the red emitting portion, the green emitting portion and the blue emitting portion; the common electron-transporting layer includes a material having a triplet energy ETel larger than ETbh; and the difference between the affinity of the host GH and the affinity of the material constituting the common electron-transporting layer is 0.4 eV or less.
摘要:
An organic electroluminescent device including a first electrode (11), a second electrode (16), and an organic material layer (20) interposed therebetween; the second electrode (16) being light-transmissible; the organic material layer (20) having a structure wherein a first carrier transporting layer (12), an organic emitting layer (14) and a second carrier transporting layer (15) are stacked in this order; the organic material layer (20) including a conductive light-reflecting layer (13) therein; and the part between the light-transmissible second electrode (16) and the light-reflecting layer (13) forming an optical resonator enhancing light emitted from the organic emitting layer (14).
摘要:
An organic electroluminescent display including: a supporting substrate; an organic electroluminescent element; a first passivation layer; a second passivation layer; a color conversion layer for adjusting and/or converting the color of a light emitted from the organic electroluminescent element; and a transparent substrate formed in sequence. Since the display has two passivation layers, a pinhole pass can be effectively blocked, thereby enhancing the sealing properties. Consequently a non-emission region such as a dark spot is hardly formed, and therefore the display can have excellent durability.
摘要:
Disclosed is a novel compound useful as a constituent of an organic EL device. Also disclosed is a practical organic EL device using this compound. This organic EL device has low driving voltage, long life, and reduced leakage current. Specifically disclosed is a compound characterized by having at least one structure (1) shown below in a molecule. Structure (1)
摘要:
An organic electroluminescence device includes an anode, a cathode and layers between the anode and the cathode, the layers at least including a hole transporting layer, a first emitting layer, a second emitting layer and an electron transporting layer, in which the first emitting layer includes a first host material and a first luminescent material and the second emitting layer is continuously formed on the first emitting layer near the cathode and includes a second host material and a second luminescent material. The second host material is a monoazine derivative, a diazine derivative, or a triazine derivative. The first and second luminescent materials are different metal complexes.
摘要:
An organic electroluminescence device including opposite anode and cathode, and a hole-transporting region, an emitting layer and an electron-transporting region in sequential order from the anode between the anode and the cathode, wherein the emitting layer is formed of a red emitting layer, a green emitting layer, and blue emitting layer; the blue emitting layer contains a host BH and a fluorescent dopant FBD; the triplet energy ETfbd of the fluorescent dopant FBD is larger than the triplet energy ETbh of the host BH; the green emitting layer contains a host GH and a phosphorescent dopant PGD; a common electron-transporting layer is provided adjacent to the red emitting layer, the green emitting layer and the blue emitting layer within the electron-transporting region; the triplet energy ETel of a material constituting the electron-transporting layer is larger than ETbh; and the difference between the affinity of the host GH and the affinity of the material constituting the electron-transporting layer is 0.4 eV or less.