摘要:
An NMR system performs in vivo localized NMR spectroscopy. A two-dimensional selective RF excitation pulse is used to localize to a cylindrical region of interest, and either phase encoding or slice selective inversion is used to localize to a disk in the cylindrical region of interest. The two-dimensional selective RF excitation is performed in a series of pulse sequences rather than a single pulse sequence, and the resulting series of acquired NMR signals are summed together to substantially cancel signal conributions from outside the cylindrical region of interest.
摘要:
An NMR antenna probe has at least one substantially circular surface coil arranged in a plane and a surface coil having substantially a Figure-8 shape, substantially coplanar with the at least one circular surface coil. The Figure-8 coil has a cross-over portion which is located substantially coaxial with the axis of the at least one circular surface coil. The coil corresponding to the least-NMR-sensitive nucleus is circular, while the non-circular coil corresponds to the most-NMR-sensitive nucleus. The circular coil is positioned on the side of the NMR probe closest to the subject to be studied.
摘要:
A method for the complete inversion of magnetization by adiabatic fast passage during an NMR experiment on a sample having a selected nuclear specie with a Larmor frequency .omega..sub.0. A radio-frequency magnetic field is generated with an amplitude B.sub.1 and an instantaneous frequency .omega.(t) which is non-linearly swept, as a function of time, from a minimum frequency .omega..sub.1 substantially at a maximum offset frequency .DELTA..omega. below the Larmor frequency .omega..sub.0, through the Larmor frequency, to a maximum frequency .omega..sub.h substantially at the maximum offset frequency .DELTA..sub..omega. above the Larmor frequency. The non-linearly swept, monotonic RF signal is applied to the sample-being-investigated for a sweep time interval sufficient to invert the magnetization of the selected nuclear specie. The preferred sweep is a tangential function:.omega.(t)=.omega..sub.0 .+-..gamma.B.sub.1 tan (arcsin (.omega..sub.s t)), (A)or.omega.(t)=.omega..sub.0 .+-..gamma.B.sub.1 tan (.omega..sub.s t)where .omega..sub.s =.alpha..gamma.B.sub.1, .gamma. is the gyromagnetic ratio of the selected nuclear specie and 0
摘要:
An RF coil assembly includes a plurality of coil supports rotatably interconnected to each other. Each coil support is configured to rotate with respect to at least one adjoining coil support. A plurality of RF coils is connected to each coil support.
摘要:
A system and method is disclosed for tracking a moving object using magnetic resonance imaging. The technique includes acquiring a scout image scan having a number of image frames and extracting non-linear motion parameters from the number of image frames of the scout image scan. The technique includes prospectively shifting slice location using the non-linear motion parameters between slice locations while acquiring a series of MR images. The system and method are particularly useful in tracking coronary artery movement during the cardiac cycle to acquire the non-linear components of coronary artery movement during a diastolic portion of the R—R interval.
摘要:
A multi-planar imaging method employs magnetic resonance to detect image data from multiple planes within a subject. Data from each plane are detected in response to the same readout gradient and are simultaneously detected. The image planes can be arbitrarily oriented with respect to each other and with respect to the readout and phase-encoding image formation magnetic field gradient pulses if desired. Overlap of image data from each of the excited image planes in the acquired image is prevented by employing a thick refocusing slab oriented orthogonal to the readout and phase-encoding directions, or by choosing planes which intersect outside the subject's anatomy.
摘要:
A newly acquired MR image of an imaging subject is displayed on a display device. An operator interactively manipulates the imaging plane during imaging, by using a button, a rocker switch, a knob, and a trackball. The button enables or disables interactive scan-plane control. The rocker switch chooses between "translate", and "rotate" modes. In "translate" mode, the knob pushes the imaging plane deeper or shallower relative to the most recently displayed image, while the trackball slides the plane sideways and/or up and down. In "rotate" mode, the knob spins the imaging plane about the center of the most recently displayed image without changing the tilt of the plane, while the trackball tumbles or tilts the imaging plane. Colored icons displayed over the image change location, size, and/or shape to indicate the direction and extent of the translation or rotation. When motion of the knob or trackball ceases, or an acquire image button is pressed, the icon reassumes its default size, shape, and location, and the location and orientation information is transformed and provided to a pulse sequencer of a magnetic resonance (MR) imaging system. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane to be acquired. The new imaging-plane location is then used for all subsequent images, until another change is made.
摘要:
A method and apparatus for producing an imaging plane on an image of a structure of interest, such as an anatomical structure, positioned in an MRI system. An operator interactively pages through real-time, planar sections of the structure of interest. Using an input device, the operator selects three separate points in a planar section of the structure under study. Within approximately one second of selection of the third point, the method of the present invention determines the imaging plane containing the three selected points, determines the centroid of the imaging plane centered on a triangle defined by the three selected points, sends such imaging geometry and in-plane offsets of the imaging plane directly to the MRI system to generate a new imaging plane optimally positioned with respect to the selected points on the structure of interest and displaying such new imaging plane. The operator can also selectively maneuver the imaging plane on the image of the structure of interest. The operator uses a graphical user interface in conjunction with the input device and a display screen for producing the imaging plane on the structure of interest. Such graphical user interface is referred to as a three point tool.
摘要:
A method for suppressing sampling-ring artifacts produced by spiral-scan-based 2D selective excitation pulses, such as a those exciting a `pencil-shaped` region, employs a 2D annular saturation pulse followed by a gradient `crusher` lobe which dephases the transverse magnetization in the annular region. The annular saturation pulse is itself based on a spiral k-space trajectory having a limited number of cycles and a small outer radius, and is designed to saturate magnetization of tissue of the subject corresponding to the artifact rings of an excitation region while not affecting a central region. The annular saturation pulse may also be reshaped to limit the peak RF power to levels currently used for clinical MR imaging, while preserving bandwidth and the 2D excitation profile.
摘要:
Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.