摘要:
A method detects active power dissipation in an integrated circuit. The method includes receiving a hardware design for the integrated circuit having one or more clock domains, wherein the hardware design comprises a local clock buffer for a clock domain, wherein the local clock buffer is configured to receive a clock signal and an actuation signal. The method includes adding instrumentation logic to the design for the clock domain, wherein the instrumentation logic is configured to compare a first value of the actuation signal determined at a beginning point of a test period to a second value of the actuation signal determined at a time when the clock domain is in an idle condition. The method includes detecting the clock domain includes unintended active power dissipation, in response to the first value of the actuation signal not being equal to the second value of the actuation signal.
摘要:
A method detects active power dissipation in an integrated circuit. The method includes receiving a hardware design for the integrated circuit having one or more clock domains, wherein the hardware design comprises a local clock buffer for a clock domain, wherein the local clock buffer is configured to receive a clock signal and an actuation signal. The method includes adding instrumentation logic to the design for the clock domain, wherein the instrumentation logic is configured to compare a first value of the actuation signal determined at a beginning point of a test period to a second value of the actuation signal determined at a time when the clock domain is in an idle condition. The method includes detecting the clock domain includes unintended active power dissipation, in response to the first value of the actuation signal not being equal to the second value of the actuation signal.
摘要:
A hardware circuit component configured to support vector operations in a scalar data path. The hardware circuit component configured to operate in a vector mode configuration and in a scalar mode configuration. The hardware circuit component configured to split the scalar mode configuration into a left half and a right half of the vector mode configuration. The hardware circuit component configured to perform one or more bit shifts over one or more stages of interconnected multiplexers in the vector mode configuration. The hardware circuit component configured to include duplicated coarse shift multiplexers at bit positions that receive data from both the left half and the right half of the vector mode configuration, resulting in one or more coarse shift multiplexers sharing the bit position.
摘要:
Techniques for reducing issue-to-issue latency by reversing processing order in half-pumped single instruction multiple data (SIMD) execution units are described. In one embodiment a processor functional unit is provided comprising a frontend unit, and execution core unit, a backend unit, an execution order control signal unit, a first interconnect coupled between and output and an input of the execution core unit and a second interconnect coupled between an output of the backend unit and an input of the frontend unit. In operation, the execution order control signal unit generates a forwarding order control signal based on the parity of an applied clock signal on reception of a first vector instruction. This control signal is in turn used to selectively forward first and second portions of an execution result of the first vector instruction via the interconnects for use in the execution of a dependent second vector instruction.
摘要:
Various systems and processes may be used to speed up multi-threaded execution. In certain implementations, a system and process may include the ability to write results of a first group of execution units associated with a first register file into the first register file using a first write port of the first register file and write results of a second group of execution units associated with a second register file into the second register file using a first write port of the second register file. The system, apparatus, and process may also include the ability to connect, in a shared register file mode, results of the second group of execution units to a second write port of the first register file and connect, in a split register file mode, results of a part of the first group of execution units to the second write port of the first register file.
摘要:
Various systems, apparatuses, processes, and/or products may be used to calculate an SHA-2 hash function in a general-purpose processor. In some implementations, a system, apparatus, process, and/or product may include the ability to calculate at least one SHA-2 sigma function by using an execution unit adapted for performing a processor instruction, the execution unit including an integrated circuit primarily designed for calculating the SHA-2 sigma function(s), and calculating the SHA-2 hash function with general-purpose hardware processing components of the processor based on the sigma function(s). In certain implementations, the calculation of the SHA-2 sigma function(s) can be performed by the integrated circuit within a single instruction, allowing for a faster calculation of the SHA-2 hash function.
摘要:
A hardware circuit component configured to support vector operations in a scalar data path. The hardware circuit component configured to operate in a vector mode configuration and in a scalar mode configuration. The hardware circuit component configured to split the scalar mode configuration into a left half and a right half of the vector mode configuration. The hardware circuit component configured to perform one or more bit shifts over one or more stages of interconnected multiplexers in the vector mode configuration. The hardware circuit component configured to include duplicated coarse shift multiplexers at bit positions that receive data from both the left half and the right half of the vector mode configuration, resulting in one or more coarse shift multiplexers sharing the bit position.
摘要:
Techniques for reducing issue-to-issue latency by reversing processing order in half-pumped single instruction multiple data (SIMD) execution units are described. In one embodiment a processor functional unit is provided comprising a frontend unit, and execution core unit, a backend unit, an execution order control signal unit, a first interconnect coupled between and output and an input of the execution core unit and a second interconnect coupled between an output of the backend unit and an input of the frontend unit. In operation, the execution order control signal unit generates a forwarding order control signal based on the parity of an applied clock signal on reception of a first vector instruction. This control signal is in turn used to selectively forward first and second portions of an execution result of the first vector instruction via the interconnects for use in the execution of a dependent second vector instruction.
摘要:
Various systems, apparatuses, processes, and programs may be used to calculate a multiply-sum of two carry-less multiplications of two input operands. In particular implementations, a system, apparatus, process, and program may include the ability to use input data busses for the input operands and an output data bus for an overall calculation result, each bus including a width of 2n bits, where n is an integer greater than one. The system, apparatus, process, and program may also calculate the carry-less multiplications of the two input operands for a lower level of a hierarchical structure and calculating the at least one multiply-sum and at least one intermediate multiply-sum for a higher level of the structure based on the carry-less multiplications of the lower level. A certain number of multiply-sums may be output as an overall calculation result dependent on mode of operation using the full width of said output data bus.
摘要:
Various systems, apparatuses, processes, and programs may be used to calculate a multiply-sum of two carry-less multiplications of two input operands. In particular implementations, a system, apparatus, process, and program may include the ability to use input data busses for the input operands and an output data bus for an overall calculation result, each bus including a width of 2n bits, where n is an integer greater than one. The system, apparatus, process, and program may also calculate the carry-less multiplications of the two input operands for a lower level of a hierarchical structure and calculating the at least one multiply-sum and at least one intermediate multiply-sum for a higher level of the structure based on the carry-less multiplications of the lower level. A certain number of multiply-sums may be output as an overall calculation result dependent on mode of operation using the full width of said output data bus.