摘要:
A dual stage occupant restraint deployment control provides a signal for first stage restraint deployment if, during a sensed possible crash event, a velocity value derived from a sensed acceleration and one or more immunity measures meet predetermined criteria. A second stage restraint deployment signal is provided if a crash severity measure derived from the time rate of change of the sensed acceleration meets predetermined criteria and the first stage activation signal has been generated. The method and apparatus ensure that the immunity criteria are met for both first and second stage deployment without repeated testing if the crash severity measure is vulnerable to non-crash accelerations produced by “misuse” events and rough road driving. The crash severity measure may be the time rate of change of the acceleration itself, an oscillation value derived this time rate of change of the acceleration with a velocity value requirement in the predetermined criteria, or a veloscillation value derived as a scaled sum of the oscillation value and the velocity value.
摘要:
A satellite crash sensor for a motor vehicle occupant restraint system that provides multi-stage deploy signaling in a manner that detects a second stage deploy crash event having an initial velocity rise followed by a loss of velocity that delays the continuation of the velocity rise. The sensor derives a velocity value from an accelerometer signal. The initiation of a possible crash event is detected and a clock count indicating a time progression into the event is initiated. A constant second stage threshold value and data defining a first stage threshold varying as function of the clock count are stored. Only for a time indicated by a first predetermined value of the clock count, a second stage datum is stored if the velocity exceeds the second stage threshold value. For a longer time determined by a second predetermined clock count, the velocity value is compared with a clock count determined value of the first stage threshold and alternatively (1) a second stage deploy signal is generated if the velocity value exceeds the value of the first stage threshold and the second stage datum is stored, (2) a first stage deploy signal is generated if the velocity value exceeds the value of the first stage threshold and the second stage datum is not stored, and (3) no deploy signal is generated if the velocity value does not exceed the first stage threshold. For at least a portion of the predetermined clock count, the clock determined value of the first threshold exceeds the second threshold value.
摘要:
An improved deployment method for a vehicular supplemental restraint system, wherein the existence of a rough road condition is indicated if a measure of crash severity obtained from an acceleration sensor exceeds a rough road threshold and the crash event reset criteria are subsequently met with no intervening deployment of the restraint device. The rough road indication is maintained for a timed period, and normal deployment of the restraint device is inhibited during the timed period unless the acceleration signal exceeds a minimum threshold and the measure of crash severity exceeds an additional deployment threshold which is initially higher than the normal deployment threshold. When the rough road condition is detected, a counter is initialized to a predefined value, and then periodically indexed so long as no potential crash event is in progress. If the counter is indexed to another predefined value prior to another rough road detection, the rough road condition is reset. A severe rough road will produce multiple initializations of the counter, resulting in a prolonged rough road indication, whereas a single rough road impact will result in a much shorter rough road indication. Raising the crash severity threshold in the presence of a rough road condition increases immunity to rough road events and allows the use of relatively aggressive reset criteria, while retaining the ability to properly deploy the restraints in a concatenated crash event.
摘要:
A controller for airbags and seat belt pretensioners stores a digital flag for each restraint to enable or disable the corresponding deployment loop. A diagnostic tester is coupled by a communications link to the controller to selectively set the flags as desired. The controller stores a seed and a key and the tester is provided with an algorithm which can calculate the key from the seed. The tester requests the seed, which is supplied, and then calculates the key and sends the key to the controller along with a request to set the status of the deployment loops. If the transmitted key matches the stored key, the controller will comply with the request and set the flags accordingly.
摘要:
A SIR system has frontal air bags and side air bags both controlled by the same microprocessor. To guard against spurious deployment of side air bags with minimal software burden, a lateral accelerometer and an arming circuit detect side crash activity and apply an arming signal to a pulse accumulator circuit in the microprocessor which monitors the accumulator state to detect arming, thereby inhibiting deployment when the arming signal is absent. The arming circuit receives the accelerometer signal, removes the dc component which is subject to drift, adds a fixed offset voltage and compares the resultant signal to threshold values to produce an arming signal when a threshold is breached.