Abstract:
A front panel structure of Plasma Display Panel (PDP) is disclosed sequentially comprising a first electrode, a second electrode and a third electrode, wherein the second electrode has transparent electrodes located on both top and bottom sides of a bus electrode. A first discharge center is formed between a transparent electrode of the first electrode and one transparent electrode of the second electrode. A second discharge center is formed between the other transparent electrode of the second electrode and a transparent electrode of the third electrode. Therefore, an emitting cell of PDP has two discharge centers. To make the discharge more stable, we choose the first electrode and the third electrode to become the scan electrodes, or to form a thicker dielectric layer or discharge deactivation film below the second bus electrode as a scan electrode.
Abstract:
A front panel structure of Plasma Display Panel (PDP) is disclosed sequentially comprising a first electrode, a second electrode and a third electrode, wherein the second electrode has transparent electrodes located on both top and bottom sides of a bus electrode. A first discharge center is formed between a transparent electrode of the first electrode and one transparent electrode of the second electrode. A second discharge center is formed between the other transparent electrode of the second electrode and a transparent electrode of the third electrode. Therefore, an emitting cell of PDP has two discharge centers. To make the discharge more stable, we choose the first electrode and the third electrode to become the scan electrodes, or to form a thicker dielectric layer or discharge deactivation film below the second bus electrode as a scan electrode.
Abstract:
A plasma display panel with color space transformation device is described. The plasma display panel with color space transformation device has a digital board, a display control circuit and a color plasma display panel. The digital board has a color space transformation device to transform the color space of the color plasma display panel into a new color space according to a video specification of images or into a new color space according to a user requirement. The digital board further modifies the images to fit the new color space. The color plasma display panel shows the modified images in the new color space.
Abstract:
A driving electrode structure of a plasma display panel is described. The driving electrode structure has a driving electrode located in one luminant cell of each pixel. The driving electrode is formed on a transparent electrode and separated by a distance from the side of the transparent electrode adjacent to the edge of the luminant cells. The driving electrode has two branches coupled to a main electrode or a side electrode at the side of the transparent electrode adjacent to the edge of luminant cells. The driving electrode approximates the discharge center of the luminant cell to improve the driving characteristic.
Abstract:
A barrier rib structure for a plasma display panel is described. The barrier rib structure formed on a back substrate has a plurality of parallel barrier ribs. Each barrier rib has a plurality of discharge spaces therein divided by separate walls. Each of the discharge spaces is connected to a small gas channel beside the barrier rib through a small connect opening.
Abstract:
The present invention provides a PDP structure comprising a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure comprises three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.
Abstract:
A driving electrode structure of a plasma display panel is described. The driving electrode structure has a driving electrode located in one luminant cell of each pixel. The driving electrode is formed on a transparent electrode and separated by a distance from the side of the transparent electrode adjacent to the edge of the luminant cells. The driving electrode has two branches coupled to a main electrode or a side electrode at the side of the transparent electrode adjacent to the edge of luminant cells. The driving electrode approximates the discharge center of the luminant cell to improve the driving characteristic.
Abstract:
The present invention provides a PDP structure including a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure includes three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.
Abstract:
A barrier rib structure for a plasma display panel is described. The barrier rib structure formed on a back substrate has a plurality of parallel barrier ribs. Each barrier rib has a plurality of nodes composed of two side-expanded trapezoid bulges. The barrier ribs are arranged according to the nodes to form a plurality of discharge spaces between the barrier ribs and a plurality of gas channels between the nodes to connect the discharge space.
Abstract:
The present invention provides a PDP structure including a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure includes three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.