Abstract:
An example method is provided in one example embodiment and includes receiving performance metric information from a plurality of small cell radios, wherein the performance metric information includes, at least in part, a number of user equipment that are to be scheduled on a first type and a second type of subframes for each small cell radio; determining resource allocation parameters for the plurality of small cell radios; exchanging interference information between two or more small cell radios of the plurality of small cell radios that includes an indication of whether a particular small cell radio is interfering with or is interfered by another small cell radio of the two or more small cell radios; and scheduling downlink resource transmissions on the first type and the second type of subframes for user equipment served by the two or more small cell radios.
Abstract:
The present disclosure provides a fine-grained link adaptation mechanism that allows for link adaptation at a resource block granularity. To this end, the fine-grained link adaptation mechanism can determine the effective signal-to-interference-plus-noise ratio for individual user equipment in a particular cell at the resource block granularity. This way, the transmitter can use the effective signal-to-interference-plus-noise ratio to adapt the modulation and coding scheme at the resource block granularity. The fine-grained link adaptation mechanism can be introduced to a long term evolution (LTE) network without substantial redesign of the LTE network.