Abstract:
A method is provided in one example embodiment and may include determining for each of one or more macro cell radios, a corresponding set of one or more small cell radios that are under a coverage area of each of the one or more macro cell radios, wherein each corresponding set is associated with a corresponding macro cell radio; calculating interference coordination parameters for each small cell radio belonging to each corresponding set, wherein the interference coordination parameters for each small cell radio belonging to each corresponding set comprises an uplink interference budget for each small cell radio; and communicating the interference coordination parameters to each small cell radio belonging to each corresponding set.
Abstract:
The present disclosure provides a fine-grained link adaptation mechanism that allows for link adaptation at a resource block granularity. To this end, the fine-grained link adaptation mechanism can determine the effective signal-to-interference-plus-noise ratio for individual user equipment in a particular cell at the resource block granularity. This way, the transmitter can use the effective signal-to-interference-plus-noise ratio to adapt the modulation and coding scheme at the resource block granularity. The fine-grained link adaptation mechanism can be introduced to a long term evolution (LTE) network without substantial redesign of the LTE network.
Abstract:
An example method is provided in one example embodiment and includes receiving performance metric information from a plurality of small cell radios, wherein the performance metric information includes, at least in part, a number of user equipment that are to be scheduled on a first type and a second type of subframes for each small cell radio; determining resource allocation parameters for the plurality of small cell radios; exchanging interference information between two or more small cell radios of the plurality of small cell radios that includes an indication of whether a particular small cell radio is interfering with or is interfered by another small cell radio of the two or more small cell radios; and scheduling downlink resource transmissions on the first type and the second type of subframes for user equipment served by the two or more small cell radios.
Abstract:
A method is provided in one example embodiment and may include generating feedback information by a small cell radio and a macro cell radio; setting a high mobility handover threshold for the macro cell radio based, at least in part, on the feedback information, wherein the high mobility handover threshold is used to trigger handover of one or more high mobility user equipment (UE) associated with the macro cell radio to the small cell radio; and setting a maximum downlink transmit power for the small cell radio based, at least in part, on the feedback information and the high mobility handover threshold.