摘要:
A method, system and computer program product for translating a type of service field of one protocol into multiple protocols. An ingress router in a DIFFerentiated SERVices network (Diffserv over MPLS network) may determine a type of quality of service, e.g., forward IP packet using best effort. A value referred to as a Per Hope Behavior (PHB) value may be generated based on the identified type of quality of service. The PHB value may be used to index into a table comprising a row of entries with different quality of service values, e.g., DSCP value, EXP value, corresponding to a particular PHB value. Consequently, the PHB value may be used to perform a single memory access to determine the quality of service values for a plurality of protocols where the quality of service values corresponds to the identified type of quality of service.
摘要:
A controllable mechanism for by-passing Layer 4 (L4) classification is based on the insertion into a set of MAC rules in SA MAC lookup means a set of Layer 4 (L4) Skip Classification Flags. Routing is accomplished by selecting which rule to apply to the packet and reading the state of the corresponding L4 Skip Classification Flag. In response to a first state of said corresponding L4 Skip Classification Flag, performing an L4 classification followed by a routing of the data packet. In response to a second state of said corresponding L4 Skip Classification Flag, reading the state of a Global Classification Flag. In response to a first state of said Global Classification Flag, performing an L4 classification followed by a routing of said data packet. In response to a second state of said Global Classification Flag performing a routing of the data packet. The L4 Skip option change does not use the option change of reading the L4 Skip Classification Flag from the port table, whereas the second embodiment uses this option. The third and fourth embodiments are similar to the first and second embodiments but with the. addition of inserting into a set of Layer 3 (L3) rules in L3 lookup means a set of Layer 4 (L4) Classification Required Flags. The third embodiment does not use the option of reading the L4 Skip Classification Flag from the port table, whereas the fourth embodiment uses this option.
摘要:
A wire-speed forwarding platform and method for supporting multifield classification of a packet fragmented into a plurality of fragments in the wire-speed forwarding platform, comprising: receiving a fragment of the fragmented packet at the forwarding platform and deriving a key from one or more fields of the received fragment; and performing multifield classification of the received fragment by matching the key to a rule out of a plurality of rules, the rule comprising a plurality of fields including at least one field for specifying whether the received fragment's fragmentation characteristics are to be applied when performing the multifield classification.
摘要:
A wire-speed forwarding platform and method for supporting multifield classification of a packet fragmented into a plurality of fragments in the wire-speed forwarding platform, comprising: receiving a fragment of the fragmented packet at the forwarding platform and deriving a key from one or more fields of the received fragment; and performing multifield classification of the received fragment by matching the key to a rule out of a plurality of rules, the rule comprising a plurality of fields including at least one field for specifying whether the received fragment's fragmentation characteristics are to be applied when performing the multifield classification.
摘要:
A wire-speed forwarding platform and method for supporting multifield classification of a packet fragmented into a plurality of fragments in the wire-speed forwarding platform, comprising: receiving a fragment of the fragmented packet at the forwarding platform and deriving a key from one or more fields of the received fragment; and performing multifield classification of the received fragment by matching the key to a rule out of a plurality of rules, the rule comprising a plurality of fields including at least one field for specifying whether the received fragment's fragmentation characteristics are to be applied when performing the multifield classification.
摘要:
A controllable mechanism for by-passing Layer 4 (L4) classification is based on the insertion into a set of Layer 3 (L3) rules in an L3 lookup tree set of Layer 4 (L4) Classification Required Flags. The state of the L4 classification flag is set by comparing the L4 classification rule to an IP (Internet Protocol) lookup rule. Routing is accomplished by selecting which rule to apply to the data packet and reading the state of the corresponding L4 Classification Required Flag. In response to a first state of the corresponding L4 Classification Required Flag, an L4 classification is performed followed by a routing of the data packet. In response to a second state of the corresponding L4 Classification Required Flag performing a routing of said data packet. In a second embodiment, the method inserts into a set of L3 rules in L3 lookup means a set L4 Classification Required Flags and Global Flags. A first state of the L4 Classification Required Flag is set when a new rule is added to L4 classification means, the new rule being correlatable to a single entry in L3 lookup means. Routing is accomplished by selecting which rule to apply to the data packet and reading the state of the corresponding L4 classification required flag. In response to a first state of the corresponding L4 classification flag, a L4 classification is performed followed by a routing of the data packet. In response to a second state of the corresponding L4 classification flag, the state of the Global Flag is read, and in response to a first state of the Global flag, a L4 classification is performed followed by a routing of the data packet. In response to a second state of the Global Flag, the data packet is routed.
摘要:
In a router comprising one or more network processing (NP) devices for routing data packets from a source NP device to a destination device via a switch fabric, with each network processing device supporting a number of interface ports, each port capable of interfacing with one or more data queues for receiving packets associated with a class-of-service characterizing the routing of the packets, a system and method for routing packets comprising: classifying a packet to be forwarded from a source NP device according to a particular class-of-service and determining outgoing interface port information of a destination NP device to forward the packet, the interface port having a pre-defined queue base address associated therewith; encoding a queue index offset for the packet associated with a particular class-of-service associated with the packet to be routed; forwarding the packet, queue index offset and outgoing interface port information to the destination NP; and, determining a queue identifier from the base address and transmitted queue index offset for indicating a particular queue by which the classified packet is to be forwarded, wherein the queue identifier is determined locally at the destination NP device forwarding the packet.
摘要:
A method and system for transmitting packets in a packet switching network. Packets received by a packet processor may be prioritized based on the urgency to process them. Packets that are urgent to be processed may be referred to as real-time packets. Packets that are not urgent to be processed may be referred to as non-real-time packets. Real-time packets have a higher priority to be processed than non-real-time packets. A real-time packet may either be discarded or transmitted into a real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time queue congestion conditions. A non-real-time packet may either be discarded or transmitted into a non-real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time and non-real-time queue congestion conditions.
摘要:
A method and system for transmitting packets in a packet switching network. Packets received by a packet processor may be prioritized based on the urgency to process them. Packets that are urgent to be processed may be referred to as real-time packets. Packets that are not urgent to be processed may be referred to as non-real-time packets. Real-time packets have a higher priority to be processed than non-real-time packets. A real-time packet may either be discarded or transmitted into a real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time queue congestion conditions. A non-real-time packet may either be discarded or transmitted into a non-real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time and non-real-time queue congestion conditions.
摘要:
A method and system for transmitting packets in a packet switching network. Packets received by a packet processor may be prioritized based on the urgency to process them. Packets that are urgent to be processed may be referred to as real-time packets. Packets that are not urgent to be processed may be referred to as non-real-time packets. Real-time packets have a higher priority to be processed than non-real-time packets. A real-time packet may either be discarded or transmitted into a real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time queue congestion conditions. A non-real-time packet may either be discarded or transmitted into a non-real-time queue based upon its value priority, the minimum and maximum rates for that value priority and the current real-time and non-real-time queue congestion conditions.