摘要:
This invention relates to a method and device for reconstructing images of an object of interest. According to the invention, the device comprises a plurality of transmitting coils (102, 103, 115, 116) for generating a primary magnetic field; a plurality of measurement coils (121, 122, 129, 136); and means (150) for selecting and exciting a first pair of transmitting coils (102, 116) among the plurality of transmitting coils, wherein the first pair of transmitting coils (102, 116) are selected and excited in a way such that of transmitting coils is minimized at the location of at least one measurement coil among the plurality of measurement coils (121, 129). By minimizing the primary magnetic field at the location of the measurement coil(s), the device can reduce the dynamic range of measurement coils, resulting in simplified hardware design for magnetic induction tomography systems.
摘要:
The invention relates to a method of MR imaging of at least a portion of a body (10) of a patient placed in an examination volume of a MR device (1), the method comprising the steps of: subjecting the portion of the body (10) to a first imaging sequence for acquiring a first signal data set (21); subjecting the portion of the body (10) to a second imaging sequence for acquiring a second signal data set (23), wherein the imaging parameters of the second imaging sequence differ from the imaging parameters of the first imaging sequence; reconstructing a MR image from the second signal data set (23) by means of regularization using the first signal data set (21) as prior information. Moreover, the invention relates to a MR device (1) and to a computer program for a MR device (1).
摘要:
An optical imaging apparatus (100) for examination of an object of interest (101), the optical imaging apparatus (100) comprising an optical radiation source (102) adapted to emit a primary optical radiation beam onto the object of interest (101), an optical radiation detector (106) adapted to detect a secondary optical radiation beam emitted by the object of interest (101) upon absorbing the primary optical radiation beam, a magnetic field generating element (107) adapted to generate an inhomogeneous magnetic field varying along an extension of the object of interest (101), and a determination unit (108) adapted to determine information concerning the object of interest (101) based on an analysis of the detected secondary optical radiation beam in combination with an analysis of the inhomogeneous magnetic field.
摘要:
A method and a monitoring device for performing an RF-safe MIT scan is disclosed in which it is prevented that an RF exposure, especially a specific absorption rate (SAR), imposed on an examination object, especially a patient, exceeds certain limit values during a magnetic induction tomography (MIT) scan. This is achieved on the one hand by an RF simulation method for simulating intended MIT operating parameters and calculating a resulting RF exposure of the object, and on the other hand by a monitoring device for monitoring the RF power which is applied to the object.
摘要:
As disclosed herein, in a parallel magnetic resonance imaging method core magnetization is excited in an examination volume of a magnetic resonance (MR) device by generating at least one high frequency (HF) pulse. Two or more MR signals are recorded in parallel from the examination volume via two or more receiving channels (R, S) of the MR device using an HF coil arrangement (9), which comprises a number of coil elements (15, 16) which is greater than the number of receiving channels (R, S), wherein the respective MR signal on each receiving channel (R, S) is formed by weighted superimposition of coil signals (A, B, C, D, B) of the individual coil elements (15, 16). An MR image is reconstructed from the recorded MR signals, the MR signals being combined with one another taking into account effective spatial sensitivity profiles associated with the individual receiving channels (R, S).
摘要:
A magnetic resonance system (8) comprises a radio frequency coil (36) which can resonate at least at first and second predetermined resonance frequencies. A tuning resonant circuit (110, 132) is serially coupled to the radio frequency coil (36). The tuning resonant circuit (110, 132) includes tuning components (Cp, Lp; Cp, Ch, Lh). Values of the tuning components (Cp, Lp; Cp, Ch, Lh) of the tuning circuit (110, 132) are selected such that a sensitivity profile of the radio frequency coil resonating at the first frequency substantially matches a sensitivity profile of the radio frequency coil resonating at the second frequency.
摘要:
The present invention relates to novel methods and compounds for combined opticalultrasound imaging. The compounds of the present invention relate to particles comprising fluorescence donor and acceptor molecules for energy exchange via FRET. The methods of the present invention use ultrasound to modify the distance between donor and acceptor molecules present on the particles, and to consequently modify the fluorescence emitted by the donor and acceptor. The compounds and methods of the present invention are useful in medical or diagnostic imaging.
摘要:
The invention relates to a method of MR imaging of at least a portion of a body (10) of a patient placed in an examination volume of a MR device (1), the method comprising the steps of: —subjecting the portion of the body (10) to a first imaging sequence for acquiring a first signal data set (21); —subjecting the portion of the body (10) to a second imaging sequence for acquiring a second signal data set (23), wherein the imaging parameters of the second imaging sequence differ from the imaging parameters of the first imaging sequence; —reconstructing a MR image from the second signal data set (23) by means of regularization using the first signal data set (21) as prior information. Moreover, the invention relates to a MR device (1) and to a computer program for a MR device (1).
摘要:
A magnetic resonance imaging system includes main magnet (20) that produces a substantially spatially and temporally constant main magnetic field within a field of view. Magnetic field gradient coils (30) impose selected magnetic field gradients on the main magnetic field within the field of view. At least one radio frequency coil (44, 44′, 44″, 144, 154) is arranged to detect a magnetic resonance signal induced by an applied radio frequency pulse. The at least one radio frequency coil includes a radio frequency antenna (90) and electronics module (78, 78′) disposed on a substrate (72). The electronics are electrically connected with the radio frequency antenna (90). The electronics are mounted in a centered region (96) surrounded by the radio frequency antenna.
摘要:
The invention relates to a parallel magnetic resonance imaging method, in which core magnetization is excited in the examination volume of an MR device by generating at least one HF pulse. Two or more MR signals are then recorded in parallel from the examination volume via two or more receiving channels (R, S) of the MR device using an HF coil arrangement (9), which comprises a number of coil elements (15, 16) which is greater than the number of receiving channels (R, S), wherein the respective MR signal on each receiving channel (R, S) is formed by weighted superimposition of coil signals (A, B, C, D, E) of the individual coil elements (15, 16). Finally, according to the invention, an MR image is reconstructed from the recorded MR signals, the MR signals being combined with one another taking into account effective spatial sensitivity profiles associated with the individual receiving channels (R, S).