摘要:
A roller-equipped annealing lehr for flat glass, having a roller conveyor inside a lehr housing, with heating units arranged in pairs above and below the roller conveyor, in rows situated one after another and extending transversely to the feed direction. Temperature regulators are provided with predetermined desired values and actual temperature values that are measured in a position-dependent fashion. In order to achieve a desired stable temperature distribution and to prevent stresses in the flat glass, a feedback loop arrangement for at least one pair of heating units situated at a particular position in the row, presets as a control variable the heating output required to predetermine the temperature distribution in the region of this position as a predetermined portion of a heating output, which is calculated based on at least one actual temperature value measured at a different position in the row.
摘要:
The invention relates to a roller-equipped annealing lehr for flat glass (1), having a roller conveyor, which is accommodated inside a lehr housing, and having heating units (2) that are arranged in pairs above and below the roller conveyor, in rows situated one after another and extending transversely to the feed direction, and are associated with temperature regulators provided with actual temperature values that are measured in a position-dependent fashion and predetermined associated desired values. In order to achieve the desired temperature distribution in a long-lasting fashion and to prevent stresses in the flat glass, the present invention provides a feedback loop arrangement (3, 4, 5), which, for at least one pair of heating units (2) situated at a particular position in the row, presets as a control variable the heating output required to predetermine the temperature distribution in the region of this position as a predetermined portion of a heating output, which is calculated based on at least one actual temperature value measured at a different position in the row. The invention can be used to particular advantage for the treatment of thin, preferably floated, flat glasses.
摘要:
A method for reducing surface defects during production of float glass having a transformation temperature Tg of at least 600° C. is provided. A method for removing impurities from the surface of the glass band in the floating chamber by molten metal flowing over the glass band is also provided. The undesired spreading of the molten metal on the glass band is limited in a contactless manner. A device is also provided for carrying out the method, in addition to a floating glass having a transformation temperature of at least 600° C., which has a maximum of 3 surface defects (top specks) having a size greater than 35 μm per m2 when it leaves the floating chamber.
摘要翻译:提供了具有至少600℃的相变温度Tg的浮法玻璃的制造中减少表面缺陷的方法。 还提供了通过在玻璃带上流动的熔融金属从浮动室中的玻璃带的表面除去杂质的方法。 熔融金属在玻璃带上的不期望的扩散受到非接触的限制。 还提供了用于执行该方法的装置,除了具有至少600℃的相变温度的浮动玻璃,其具有最大3个具有大于35mum / m 2的尺寸的表面缺陷(顶部斑点) 当它离开浮动的房间。
摘要:
The thin flat glass substrate, especially for display engineering, has a thickness of less than 1.5 mm, a length of at least 1800 mm, a width of at least 1800 mm and a difference between a smallest thickness and largest thickness of less than 50 μm. The float glass process for making the improved flat glass substrate provides flags (9) in the molten metal bath in the hot-spread region on both sides of the forming glass sheet, to minimize the variation in thickness of the thin flat glass substrate formed by the process.
摘要:
A method for reducing surface defects during production of a float glass with a transformation temperature Tg equal to or greater than 600° C. is provided which includes removing impurities from a surface of the glass strip in a float chamber by a molten metal flowing over the glass strip in the float bath. A device for carrying out the inventive method and a float glass whose transformation temperature is equal to or greater than 600° C. and which has a maximum of 3 surface defects (Top Speckd) whose size is greater than 35 μm per m2 at the float chamber are also provided.
摘要翻译:提供了具有等于或高于600℃的相变温度Tg的浮法玻璃的制造过程中减少表面缺陷的方法,其包括在浮法室中从熔融金属流过 玻璃条在浮浴中。 用于实施本发明的方法的装置和相变温度等于或大于600℃并且具有最大3个表面缺陷(Top Speckd)的浮法玻璃,其尺寸大于35um / m 2 还提供了浮子室的2“。
摘要:
The thin flat glass substrate, especially for display engineering, has a thickness of less than 1.5 mm, a length of at least 1800 mm, a width of at least 1800 mm and a difference between a smallest thickness and largest thickness of less than 50 μm. The float glass process for making the improved flat glass substrate provides flags (9) in the molten metal bath in the hot-spread region on both sides of the forming glass sheet to minimize the variation in thickness of the thin flat glass substrate formed by the process.
摘要:
The thin flat glass substrate, especially for display engineering, has a thickness of less than 1.5 mm, a length of at least 1800 mm, a width of at least 1800 mm and a difference between a smallest thickness and largest thickness of less than 50 μm. The float glass process for making the improved flat glass substrate provides flags (9) in the molten metal bath in the hot-spread region on both sides of the forming glass sheet, to minimize the variation in thickness of the thin flat glass substrate formed by the process.
摘要:
In the method for cutting a continuous glass sheet during production of flat glass with an inhomogeneous thickness distribution across a width of the glass sheet, a cutting tool is moved at an angle to a travel direction of the glass sheet across its width with a cutting force predetermined by a controller, a fissure is produced in the glass sheet by the cutting tool during cross-cutting and the glass sheet is mechanically broken along the fissure. The cutting force, adapted to a thickness of the glass sheet, is actively specified by the controller based on externally input control commands. In preferred embodiments the position of the cutting tool on the glass sheet is detected and the thickness of the glass sheet can be measured using appropriate sensors during cross-cutting.
摘要:
A device for supporting a ribbon of glass, having at least one roller arranged in an area of an underside of the ribbon of glass. In order to keep a ribbon of glass as free as possible of mechanical damage during production, at least one support device is assigned to the roller. With an actuating device the roller or the support device can selectively be contacted with the underside of the ribbon of glass, wherein the support device is in contact, at least in some areas, with the underside of the ribbon of glass by way of a gas cushion. The rollers are then employed at the start of production or after a ribbon of glass has snapped off in order to transmit an advancement force to the ribbon of glass.
摘要:
In the method for cutting a continuously moving glass sheet with an inhomogeneous thickness distribution across the glass sheet, a cutting tool is moved across it at an angle to its travel direction to form a fissure and then the glass sheet is broken along the fissure. To avoid premature breakage in thin regions the applied cutting force is controlled by a controller based on control commands so that the cutting force is decreased when the glass sheet thickness decreases and is increased when it increases. In a preferred embodiment cutting force switchover points are based on an initial measurement of the thickness distribution. In another embodiment the thickness is continuously measured and the applied cutting force is automatically adjusted accordingly, so that the cutting force is greater when the thickness is greater, and vice versa.