摘要:
An apparatus and method for drying a receiver media (30) in an ink jet printer. The apparatus generally comprises a means for creating a pressure differential between the upper surface (20) and the lower surface (50) of the receiver media (30), wherein the pressure at the lower surface (50) of the receiver media (30) is lower than the pressure at the upper surface (20) of the receiver media (30). The pressure differential-creating means may include a vacuum pump (70) adapted to generate a vacuum at the lower surface (50) of the receiver media (30) or an air pump (130) adapted to pass air currents (140) across the lower surface (50) of the receiver media (30) to cause a “Bernoulli effect”. The method generally comprises the steps of depositing ink droplets (10) onto the upper surface (20) of the receiver media (30); and creating a pressure differential between the upper surface (20) and the lower surface (50) of the receiver media (30), whereby carrier fluid contained in ink droplets (10) is drawn through the receiver media (30) from the upper surface (20) to the lower surface (50).
摘要:
Apparatus for controlling ink in a continuous ink jet printer in which a continuous stream of ink is emitted from a nozzle includes a nozzle bore to establish a continuous stream of ink; a heater having a plurality of selectively independently actuated sections which are positioned along respectively different portions of the nozzle bore; a variable power source for the heater sections; and an actuator adapted to selectively activate none, one, or a plurality of said heater sections with an adjustable amount of power such that actuation of heater sections associated with only a portion of the entire nozzle bore perimeter produces an asymmetric application of heat to the stream to control the direction and the amount of deflection of the stream as a function of the amount of power of the activated heater sections.
摘要:
A continuous ink jet print head is formed of a silicon substrate that includes integrated circuits formed therein for controlling operation of the print head. An insulating layer or layers overlies the silicon substrate and has a series or an array of nozzle openings or bores formed therein along the length of the substrate and each nozzle opening is formed in a recess in the insulating layer or layers by a material depletion process such as etching. The process of etching defines the nozzle openings at locations where heater elements are formed in the insulating layer or layers during a conventional CMOS processing of the integrated circuits. The print head structure thereby provides for minimal post processing of the print head after the completion of the CMOS processing.
摘要:
An ink jet print head is formed of a silicon substrate that includes an integrated circuit formed therein for controlling operation of the print head. The silicon substrate has one or more ink channels formed therein along the longitudinal direction of the noble array. An insulating layer or layers overlie the silicon substrate and has a series or an array of nozzle openings or bores formed therein along the length of the substrate and each nozzle opening communicates with an ink channel. The area comprising the nozzle openings forms a generally planar surface to facilitate maintenance of the printhead. A heater element is associated with each nozzle opening or bore for asymmetrically heating ink as ink passes through the nozzle opening or bore.
摘要:
To compensate for droplet placement errors, a continuous ink jet printer includes a heater having a plurality of selectively independently actuated sections which are positioned along respectively different portions of the nozzle bore's perimeter. An actuator selectively activates none, one, or a plurality of the heater sections such that: actuation of heater sections associated with only a portion of the entire nozzle bore perimeter produces an asymmetric application of heat to the stream to control the direction of the stream between a print direction and a non-print direction, and simultaneous actuation of different numbers of heater sections associated with only a portion of the entire nozzle bore perimeter produces corresponding different asymmetric application of heat to the stream to thereby control the direction of the stream between one print direction and another print direction.
摘要:
Apparatus is disclosed for controlling ink in a continuous ink jet printer in which a continuous stream of ink is emitted from a nozzle, wherein an ink stream generator establishes a continuous flow of ink in a stream such that the stream breaks up into a plurality of droplets at a position spaced from the ink stream generator. A stream deflector includes a body having a surface positioned adjacent to the stream between the ink stream generator and the position whereat the stream breaks up into droplets such that the stream contacts the surface and is deflected at least in part due to a tendency of liquid to contact a surface in proportion to liquid-solid free energy. The stream may be deflected substantially totally due to a tendency of liquid to contact a surface in proportion to liquid-solid free energy, or may be deflected partially due to a tendency of liquid to contact a surface in proportion to liquid-solid free energy and partially due to a reactive force on the stream exerted by the surface as a result of collision of the stream with the surface.
摘要:
An ink jet print head is formed of a silicon substrate that includes an integrated circuit formed therein for controlling operation of the print head. The silicon substrate has one or more ink channels formed therein along the longitudinal direction of the nozzle array. An insulating layer or layers overlie the silicon substrate and has a series or an array of nozzle openings or bores formed therein along the length of the substrate and each nozzle opening communicates with an ink channel. The area comprising the nozzle openings forms a generally planar surface to facilitate maintenance of the printhead. A heater element is associated with each nozzle opening or bore for asymmetrically heating ink as ink passes through the nozzle opening or bore.
摘要:
A continuous ink jet print head is formed using a combination of traditional CMOS technology to form the various controlling electrical circuits on a silicon substrate having insulating layer(s) which provide electrical connections to heater elements associated with a nozzle and a MEMS technology for forming ink delivery cavities or channels and bores. A blocking structure is formed in the silicon substrate between an ink channel formed in the silicon substrate and a nozzle bore formed in the insulating layer(s). The blocking structure causes ink in an ink channel to flow around the blocking structure and thereby develop lateral flow components to the liquid entering the bore so that as the stream of fluid emanates from the bore the lateral flow components are a factor in allowing an increased stream deflection under the condition of asymmetric heating.
摘要:
A method for controlling a terminal flow of ink droplets from the nozzle of an ink jet printer at the end of a printing operation is provided. The printer has a first heating element disposed on one side of the nozzle that is selectively actuated to direct ink droplets away from a recording medium and into an ink gutter during a printing operation. The printer also has a second heating element disposed on the side of the nozzle opposite from the first heating element. After the first heating element applies its last operational heat pulse to the printing nozzle at the end of a printing operation, the second heating element applies at least one deflection correcting heat pulse of the same duration, magnitude and period as the last operational heat pumps. The method prevents ink droplets generated after the end of a printing operation from erroneously striking the printing medium.
摘要:
Apparatus for controlling ink in an ink jet printer includes a print head of the type wherein ink forms a meniscus above a nozzle bore and spreads along an upper surface of the print head. The print head includes a substrate having an upper surface; an ink delivery channel below the substrate; and a nozzle bore through the substrate and opening below the substrate into the ink delivery channel to establish an ink flow path. A source of pressurized ink communicates with the ink delivery channel such that ink tends to form a meniscus on the upper surface of the heater. A resistive heater lies about at least a portion of the nozzle bore, the heater having an upper surface which is coplanar with a surrounding portion of the upper surface of the substrate, whereby the print head is flat in regions along an ink-to-solid contact line of the meniscus.