摘要:
An apparatus for producing a cleaning solution. Specifically, the apparatus of some embodiments includes a reservoir for containing sodium chlorite. A disposable ion exchange cartridge is placed in fluid communication with the sodium chlorite reservoir via a conduit. The ion exchange cartridge is selectively disconnectable from fluid communication with the sodium chlorite reservoir or from the conduit. Generally, the ion exchange cartridge will be disconnected and replaced when the ion exchange materials in the cartridge are depleted or exhausted. A catalyst can also be placed in fluid communication with the sodium chlorite reservoir. The catalyst can be contained in disposable or selectively disconnectable cartridge that can be easily replaced when depleted. In another aspect of the invention, a color comparison chart is positioned adjacent a conduit to allow one to compare the color of the solution to the chart and determine the concentration of the solution.
摘要:
A method for determining the concentration of chlorine dioxide in a chlorine dioxide solution having the following steps:(1) isolating two samples, Sample 1 and Sample 2, from the chlorine dioxide solution;(2) stripping the chlorine dioxide from Sample 1;(3) completely converting the chlorine dioxide in Sample 2 to other chlorine species;(4) transporting the chlorine dioxide samples either within the facility or outside the facility to a testing site;(5) separately determining the concentration of the chlorine containing species in each of Samples 1 and 2; and(6) calculating the concentration of chlorine dioxide in said chlorine dioxide solution based upon the information obtained in step (5).
摘要:
The halogen dioxide, chlorine dioxide is produced from its chlorite reactant using ion exchange media in a stable reactant form, and then passing a known concentration of counter ions through the ion exchange media in a moist environment so that there is an exchange of ions, and the reactants that are released form activated chlorine dioxide within the ion exchange material. The ion exchange media both contributes reactants to and extracts contaminants from the moist environment via its ion exchange mechanism. The counter ions may be derived from one or more stable precursor solutions which themselves may contain reactants and/or soluble catalysts. The reactants of the precursor solutions cannot act as the counter ion, or ions, in the ion exchange mechanism, but the soluble catalysts can. The ion exchange media can be mixed or layered with one or more insoluble catalysts, to enhance the formation of the activated halogen dioxide, chlorine dioxide within the ion exchange material.
摘要:
Chlorous acid is generated from a chlorite salt precursor, a chlorate salt precursor, or a combination of both by ion exchange. The ion exchange material facilitates the generation of chlorous acid by simultaneously removing unwanted cations from solution and adding hydrogen ion to solution. Chlorine dioxide is generated in a controlled manner from chlorous acid by catalysis. Chlorine dioxide can be generated either subsequent to the generation of chlorous acid or simultaneously with the generation of chlorous acid. For catalysis of chlorous acid to chlorine dioxide, the chlorous acid may be generated by ion exchange or in a conventional manner. Ion exchange materials are also used to purify the chlorous acid and chlorine dioxide solutions, without causing degradation of said solutions, to exchange undesirable ions in the chlorous acid and chlorine dioxide solutions with desirable ions, such as stabilizing ions, and to adjust the pH of chlorous acid and chlorine dioxide solutions.
摘要:
Chlorous acid is generated from a chlorite salt precursor, a chlorate salt precursor, or a combination of both by ion exchange. The ion exchange material facilitates the generation of chlorous acid by simultaneously removing unwanted cations from solution and adding hydrogen ion to solution. Chlorine dioxide is generated in a controlled manner from chlorous acid by catalysis. Chlorine dioxide can be generated either subsequent to the generation of chlorous acid or simultaneously with the generation of chlorous acid. For catalysis of chlorous acid to chlorine dioxide, the chlorous acid may be generated by ion exchange or in a conventional manner. Ion exchange materials are also used to purify the chlorous acid and chlorine dioxide solutions, without causing degradation of said solutions, to exchange undesirable ions in the chlorous acid and chlorine dioxide solutions with desirable ions, such as stabilizing ions, and to adjust the pH of chlorous acid and Chlorine dioxide solutions.
摘要:
The halogen dioxide, chlorine dioxide is produced from its chlorite reactant using ion exchange media in a stable reactant form, and then passing a known concentration of counter ions through the ion exchange media in a moist environment so that there is an exchange of ions, and the reactants that are released form activated chlorine dioxide within the ion exchange material. The ion exchange media both contributes reactants to and extracts contaminants from the moist environment via its ion exchange mechanism. The counter ions may be derived from one or more stable precursor solutions which themselves may contain reactants and/or soluble catalysts. The reactants of the precursor solutions cannot act as the counter ion, or ions, in the ion exchange mechanism, but the soluble catalysts can. The ion exchange media can be mixed or layered with one or more insoluble catalysts, to enhance the formation of the activated halogen dioxide, chlorine dioxide within the ion exchange material.
摘要:
An electrolytic process and apparatus is disclosed for oxidizing or reducing inorganic and organic species, especially in dilute aqueous solutions. The electrolytic reactor includes an anode and cathode in contact with a packed bed of particulate ion exchange material which establishes an infinite number of transfer sites in the electrolyte to significantly increase the mobility of the ionic species to be oxidized or reduced toward the anode or cathode, respectively. The ion exchange material is cationic for oxidation and anionic for reduction, or a combination of both for special circumstances. Preferably, the ion exchange material is treated to convert a portion of the transfer sites to semiconductor junctions which act as mini anodes, or cathodes, to significantly increase the capacity of the reactor to oxidize or reduce the species to be treated. Exemplary applications for the disclosed electrolytic process and apparatus are the conversion of halides to halous acids in dilute solutions.
摘要:
An electrolytic process and apparatus is disclosed for oxidizing or reducing inorganic and organic species, especially in dilute aqueous solutions. The electrolytic reactor includes an anode and cathode in contract with a packed bed of particulate ion exchange material which establishes an infinite number of transfer sites in the electrolyte to significantly increase the mobility of the ionic species to be oxidized or reduced toward the anode or cathode, respectively. The ion exchange material is cationic for oxidation and anionic for reduction, or a combination of both for special circumstances. Preferably, the ion exchange material is treated to convert a portion of the transfer sites to semiconductor junctions which act as mini anodes, or cathodes, to significantly increase the capacity of the reactor to oxidize or reduce the species to be treated. Exemplary applications for the disclosed electrolytic process and apparatus are the conversion of halides to halous acids in dilute solutions.
摘要:
Chlorous acid is generated from a chlorite salt precursor, a chlorate salt precursor, or a combination of both by ion exchange. The ion exchange material facilitates the generation of chlorous acid by simultaneously removing unwanted cations from solution and adding hydrogen ion to solution. Chlorine dioxide is generated in a controlled manner from chlorous acid by catalysis. Chlorine dioxide can be generated either subsequent to the generation of chlorous acid or simultaneously with the generation of chlorous acid. For catalysis of chlorous acid to chlorine dioxide, the chlorous acid may be generated by ion exchange or in a conventional manner. Ion exchange materials are also used to purify the chlorous acid and chlorine dioxide solutions, without causing degradation of said solutions, to exchange undesirable ions in the chlorous acid and chlorine dioxide solutions with desirable ions, such as stabilizing ions, and to adjust the pH of chlorous acid and chlorine dioxide solutions.
摘要:
Chlorine dioxide solutions are stabilized and prepared for storage, transportation, and testing. Each solution is separated into two samples. Chlorine dioxide is removed from one sample and then each sample is stabilized and prepared such that each sample contains only oxidized and/or reduced forms of chlorine dioxide. The stable samples may be stored, transported, and tested for chlorine dioxide. The samples are tested for the oxidized and/or reduced forms of chlorine dioxide by known methods, and mass balance equations are used to determine the concentration of chlorine dioxide in the original sample before stabilization and preparation.