Abstract:
Methods of processing a viscous ribbon include supplying a molten material from a supply vessel. Methods include forming the molten material into the viscous ribbon. The viscous ribbon travels along a travel path. Methods include receiving thermal light energy produced from the viscous ribbon. Methods include generating an image of the viscous ribbon from the thermal light energy. Methods include detecting a defect of the viscous ribbon from the image.
Abstract:
Laser scanning systems and methods are disclosed herein that can provide quick and efficient measurement of extruded ceramic logs, particularly related to log shape, during manufacture. Two two-dimensional laser scans from respective laser scanners are performed and the resulting laser scan data is combined to form a three-dimensional surface shape measurement of the ceramic log. The systems and methods disclosed herein enable a non-contact measurement of the extruded ceramic log, which reduces the risk of physically damaging the log. The measurement results can be used to adjust the extrusion process of the extruder that forms the extruded ceramic logs.
Abstract:
A method for determining a shape of a substantially cylindrical specular reflective surface includes the step of obtaining calibration data and the step of obtaining target data about a target structure. The method further includes the step of defining a target line from the target data, where the target line represents a feature of the target structure and the step of capturing a reflected image of the target structure in the specular reflective surface. The method further includes the step of obtaining reflected data from the reflected image and the step of defining a reflected line from the reflected data, where the reflected line represents a reflection of the feature of the target structure. The method also includes the step of determining a correspondence between the target line and the reflected line and using the correspondence and the calibration data to determine the shape of the specular reflective surface.
Abstract:
Laser scanning systems and methods are disclosed herein that can provide quick and efficient measurement of extruded ceramic logs, particularly related to log shape, during manufacture. Two two-dimensional laser scans from respective laser scanners are performed and the resulting laser scan data is combined to form a three-dimensional surface shape measurement of the ceramic log. The systems and methods disclosed herein enable a non-contact measurement of the extruded ceramic log, which reduces the risk of physically damaging the log. The measurement results can be used to adjust the extrusion process of the extruder that forms the extruded ceramic logs.
Abstract:
Methods of processing a viscous ribbon include supplying a molten material from a supply vessel. Methods include forming the molten material into the viscous ribbon. The viscous ribbon travels along a travel path. Methods include receiving thermal light energy produced from the viscous ribbon. Methods include generating an image of the viscous ribbon from the thermal light energy. Methods include detecting a defect of the viscous ribbon from the image.
Abstract:
A method for determining a shape of a substantially cylindrical specular reflective surface includes the step of obtaining calibration data and the step of obtaining target data about a target structure. The method further includes the step of defining a target line from the target data, where the target line represents a feature of the target structure and the step of capturing a reflected image of the target structure in the specular reflective surface. The method further includes the step of obtaining reflected data from the reflected image and the step of defining a reflected line from the reflected data, where the reflected line represents a reflection of the feature of the target structure. The method also includes the step of determining a correspondence between the target line and the reflected line and using the correspondence and the calibration data to determine the shape of the specular reflective surface.